Showing 100 of total 100 results (show query)

bioc

bumphunter:Bump Hunter

Tools for finding bumps in genomic data

Maintained by Tamilselvi Guharaj. Last updated 5 months ago.

dnamethylationepigeneticsinfrastructuremultiplecomparisonimmunooncology

1.5 match 16 stars 11.74 score 210 scripts 42 dependents

cran

astroFns:Astronomy: Time and Position Functions, Misc. Utilities

Miscellaneous astronomy functions, utilities, and data.

Maintained by Andrew Harris. Last updated 3 years ago.

9.8 match 1.58 score 38 scripts

faosorios

fastmatrix:Fast Computation of some Matrices Useful in Statistics

Small set of functions to fast computation of some matrices and operations useful in statistics and econometrics. Currently, there are functions for efficient computation of duplication, commutation and symmetrizer matrices with minimal storage requirements. Some commonly used matrix decompositions (LU and LDL), basic matrix operations (for instance, Hadamard, Kronecker products and the Sherman-Morrison formula) and iterative solvers for linear systems are also available. In addition, the package includes a number of common statistical procedures such as the sweep operator, weighted mean and covariance matrix using an online algorithm, linear regression (using Cholesky, QR, SVD, sweep operator and conjugate gradients methods), ridge regression (with optimal selection of the ridge parameter considering several procedures), omnibus tests for univariate normality, functions to compute the multivariate skewness, kurtosis, the Mahalanobis distance (checking the positive defineteness), and the Wilson-Hilferty transformation of gamma variables. Furthermore, the package provides interfaces to C code callable by another C code from other R packages.

Maintained by Felipe Osorio. Last updated 1 years ago.

commutation-matrixjarque-bera-testldl-factorizationlu-factorizationmatrix-api-for-r-packagesmatrix-normsmodified-choleskyols-regressionpower-methodridge-regressionsherman-morrisonstatisticssweep-operatorsymmetrizer-matrixfortranopenblas

2.3 match 19 stars 6.27 score 37 scripts 10 dependents

ohagen

TreeSimGM:Simulating Phylogenetic Trees under General Bellman Harris and Lineage Shift Model

Provides a flexible simulation tool for phylogenetic trees under a general model for speciation and extinction. Trees with a user-specified number of extant tips, or a user-specified stem age are simulated. It is possible to assume any probability distribution for the waiting time until speciation and extinction. Furthermore, the waiting times to speciation / extinction may be scaled in different parts of the tree, meaning we can simulate trees with clade-dependent diversification processes. At a speciation event, one species splits into two. We allow for two different modes at these splits: (i) symmetric, where for every speciation event new waiting times until speciation and extinction are drawn for both daughter lineages; and (ii) asymmetric, where a speciation event results in one species with new waiting times, and another that carries the extinction time and age of its ancestor. The symmetric mode can be seen as an vicariant or allopatric process where divided populations suffer equal evolutionary forces while the asymmetric mode could be seen as a peripatric speciation where a mother lineage continues to exist. Reference: O. Hagen and T. Stadler (2017). TreeSimGM: Simulating phylogenetic trees under general Bellman Harris models with lineage-specific shifts of speciation and extinction in R. Methods in Ecology and Evolution. <doi:10.1111/2041-210X.12917>.

Maintained by Oskar Hagen. Last updated 5 years ago.

4.9 match 2.73 score 18 scripts

goldingn

BayesComm:Bayesian Community Ecology Analysis

Bayesian multivariate binary (probit) regression models for analysis of ecological communities.

Maintained by Nick Golding. Last updated 9 years ago.

openblascpp

1.8 match 9 stars 4.35 score 25 scripts

hubverse-org

hubVis:Plotting methods for hub models output

Plotting methods for hub models output.

Maintained by Lucie Contamin. Last updated 4 months ago.

hubverse

1.6 match 3 stars 4.44 score 22 scripts 1 dependents

tomaspinall

NFCP:N-Factor Commodity Pricing Through Term Structure Estimation

Commodity pricing models are (systems of) stochastic differential equations that are utilized for the valuation and hedging of commodity contingent claims (i.e. derivative products on the commodity) and other commodity related investments. Commodity pricing models that capture market dynamics are of great importance to commodity market participants in order to exercise sound investment and risk-management strategies. Parameters of commodity pricing models are estimated through maximum likelihood estimation, using available term structure futures data of a commodity. 'NFCP' (n-factor commodity pricing) provides a framework for the modeling, parameter estimation, probabilistic forecasting, option valuation and simulation of commodity prices through state space and Monte Carlo methods, risk-neutral valuation and Kalman filtering. 'NFCP' allows the commodity pricing model to consist of n correlated factors, with both random walk and mean-reverting elements. The n-factor commodity pricing model framework was first presented in the work of Cortazar and Naranjo (2006) <doi:10.1002/fut.20198>. Examples presented in 'NFCP' replicate the two-factor crude oil commodity pricing model presented in the prolific work of Schwartz and Smith (2000) <doi:10.1287/mnsc.46.7.893.12034> with the approximate term structure futures data applied within this study provided in the 'NFCP' package.

Maintained by Thomas Aspinall. Last updated 3 years ago.

1.5 match 5 stars 4.40 score 4 scripts

astroherring

repolr:Repeated Measures Proportional Odds Logistic Regression

Fits linear models to repeated ordinal scores using GEE methodology.

Maintained by Nick Parsons. Last updated 9 years ago.

openblascpp

3.8 match 1.36 score 23 scripts

wasquith

lmomco:L-Moments, Censored L-Moments, Trimmed L-Moments, L-Comoments, and Many Distributions

Extensive functions for Lmoments (LMs) and probability-weighted moments (PWMs), distribution parameter estimation, LMs for distributions, LM ratio diagrams, multivariate Lcomoments, and asymmetric (asy) trimmed LMs (TLMs). Maximum likelihood and maximum product spacings estimation are available. Right-tail and left-tail LM censoring by threshold or indicator variable are available. LMs of residual (resid) and reversed (rev) residual life are implemented along with 13 quantile operators for reliability analyses. Exact analytical bootstrap estimates of order statistics, LMs, and LM var-covars are available. Harri-Coble Tau34-squared Normality Test is available. Distributions with L, TL, and added (+) support for right-tail censoring (RC) encompass: Asy Exponential (Exp) Power [L], Asy Triangular [L], Cauchy [TL], Eta-Mu [L], Exp. [L], Gamma [L], Generalized (Gen) Exp Poisson [L], Gen Extreme Value [L], Gen Lambda [L, TL], Gen Logistic [L], Gen Normal [L], Gen Pareto [L+RC, TL], Govindarajulu [L], Gumbel [L], Kappa [L], Kappa-Mu [L], Kumaraswamy [L], Laplace [L], Linear Mean Residual Quantile Function [L], Normal [L], 3p log-Normal [L], Pearson Type III [L], Polynomial Density-Quantile 3 and 4 [L], Rayleigh [L], Rev-Gumbel [L+RC], Rice [L], Singh Maddala [L], Slash [TL], 3p Student t [L], Truncated Exponential [L], Wakeby [L], and Weibull [L].

Maintained by William Asquith. Last updated 1 months ago.

flood-frequency-analysisl-momentsmle-estimationmps-estimationprobability-distributionrainfall-frequency-analysisreliability-analysisrisk-analysissurvival-analysis

0.5 match 2 stars 8.06 score 458 scripts 38 dependents

wyattbensken

multimorbidity:Harmonizing Various Comorbidity, Multimorbidity, and Frailty Measures

Identifying comorbidities, frailty, and multimorbidity in claims and administrative data is often a duplicative process. The functions contained in this package are meant to first prepare the data to a format acceptable by all other packages, then provide a uniform and simple approach to generate comorbidity and multimorbidity metrics based on these claims data. The package is ever evolving to include new metrics, and is always looking for new measures to include. The citations used in this package include the following publications: Anne Elixhauser, Claudia Steiner, D. Robert Harris, Rosanna M. Coffey (1998) <doi:10.1097/00005650-199801000-00004>, Brian J Moore, Susan White, Raynard Washington, et al. (2017) <doi:10.1097/MLR.0000000000000735>, Mary E. Charlson, Peter Pompei, Kathy L. Ales, C. Ronald MacKenzie (1987) <doi:10.1016/0021-9681(87)90171-8>, Richard A. Deyo, Daniel C. Cherkin, Marcia A. Ciol (1992) <doi:10.1016/0895-4356(92)90133-8>, Hude Quan, Vijaya Sundararajan, Patricia Halfon, et al. (2005) <doi:10.1097/01.mlr.0000182534.19832.83>, Dae Hyun Kim, Sebastian Schneeweiss, Robert J Glynn, et al. (2018) <doi:10.1093/gerona/glx229>, Melissa Y Wei, David Ratz, Kenneth J Mukamal (2020) <doi:10.1111/jgs.16310>, Kathryn Nicholson, Amanda L. Terry, Martin Fortin, et al. (2015) <doi:10.15256/joc.2015.5.61>, Martin Fortin, José Almirall, and Kathryn Nicholson (2017)<doi:10.15256/joc.2017.7.122>.

Maintained by Wyatt Bensken. Last updated 2 years ago.

0.5 match 1 stars 3.70 score 2 scripts