Showing 40 of total 40 results (show query)
easystats
bayestestR:Understand and Describe Bayesian Models and Posterior Distributions
Provides utilities to describe posterior distributions and Bayesian models. It includes point-estimates such as Maximum A Posteriori (MAP), measures of dispersion (Highest Density Interval - HDI; Kruschke, 2015 <doi:10.1016/C2012-0-00477-2>) and indices used for null-hypothesis testing (such as ROPE percentage, pd and Bayes factors). References: Makowski et al. (2021) <doi:10.21105/joss.01541>.
Maintained by Dominique Makowski. Last updated 9 days ago.
bayes-factorsbayesfactorbayesianbayesian-frameworkcredible-intervaleasystatshacktoberfesthdimapposterior-distributionsrope
579 stars 16.87 score 2.2k scripts 83 dependentsxrobin
pROC:Display and Analyze ROC Curves
Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). (Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.
Maintained by Xavier Robin. Last updated 5 months ago.
bootstrappingcovariancehypothesis-testingmachine-learningplotplottingrocroc-curvevariancecpp
125 stars 15.18 score 16k scripts 445 dependentsmfrasco
Metrics:Evaluation Metrics for Machine Learning
An implementation of evaluation metrics in R that are commonly used in supervised machine learning. It implements metrics for regression, time series, binary classification, classification, and information retrieval problems. It has zero dependencies and a consistent, simple interface for all functions.
Maintained by Michael Frasco. Last updated 6 years ago.
99 stars 13.02 score 6.1k scripts 51 dependentsjackstat
ModelMetrics:Rapid Calculation of Model Metrics
Collection of metrics for evaluating models written in C++ using 'Rcpp'. Popular metrics include area under the curve, log loss, root mean square error, etc.
Maintained by Tyler Hunt. Last updated 4 years ago.
aucloglossmachine-learningmetricsmodel-evaluationmodel-metricscpp
29 stars 11.83 score 1.3k scripts 306 dependentsthie1e
cutpointr:Determine and Evaluate Optimal Cutpoints in Binary Classification Tasks
Estimate cutpoints that optimize a specified metric in binary classification tasks and validate performance using bootstrapping. Some methods for more robust cutpoint estimation are supported, e.g. a parametric method assuming normal distributions, bootstrapped cutpoints, and smoothing of the metric values per cutpoint using Generalized Additive Models. Various plotting functions are included. For an overview of the package see Thiele and Hirschfeld (2021) <doi:10.18637/jss.v098.i11>.
Maintained by Christian Thiele. Last updated 4 months ago.
bootstrappingcutpoint-optimizationroc-curvecpp
88 stars 10.44 score 322 scripts 1 dependentsspatstat
spatstat.explore:Exploratory Data Analysis for the 'spatstat' Family
Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
Maintained by Adrian Baddeley. Last updated 10 days ago.
cluster-detectionconfidence-intervalshypothesis-testingk-functionroc-curvesscan-statisticssignificance-testingsimulation-envelopesspatial-analysisspatial-data-analysisspatial-sharpeningspatial-smoothingspatial-statistics
1 stars 10.18 score 67 scripts 150 dependentsevalclass
precrec:Calculate Accurate Precision-Recall and ROC (Receiver Operator Characteristics) Curves
Accurate calculations and visualization of precision-recall and ROC (Receiver Operator Characteristics) curves. Saito and Rehmsmeier (2015) <doi:10.1371/journal.pone.0118432>.
Maintained by Takaya Saito. Last updated 1 years ago.
45 stars 9.59 score 496 scripts 5 dependentsirinagain
iglu:Interpreting Glucose Data from Continuous Glucose Monitors
Implements a wide range of metrics for measuring glucose control and glucose variability based on continuous glucose monitoring data. The list of implemented metrics is summarized in Rodbard (2009) <doi:10.1089/dia.2009.0015>. Additional visualization tools include time-series plots, lasagna plots and ambulatory glucose profile report.
Maintained by Irina Gaynanova. Last updated 24 days ago.
26 stars 9.00 score 39 scriptsflr
FLCore:Core Package of FLR, Fisheries Modelling in R
Core classes and methods for FLR, a framework for fisheries modelling and management strategy simulation in R. Developed by a team of fisheries scientists in various countries. More information can be found at <http://flr-project.org/>.
Maintained by Iago Mosqueira. Last updated 10 days ago.
fisheriesflrfisheries-modelling
16 stars 8.78 score 956 scripts 23 dependentsbrian-j-smith
MachineShop:Machine Learning Models and Tools
Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.
Maintained by Brian J Smith. Last updated 7 months ago.
classification-modelsmachine-learningpredictive-modelingregression-modelssurvival-models
62 stars 7.95 score 121 scriptshughparsonage
hutils:Miscellaneous R Functions and Aliases
Provides utility functions for, and drawing on, the 'data.table' package. The package also collates useful miscellaneous functions extending base R not available elsewhere. The name is a portmanteau of 'utils' and the author.
Maintained by Hugh Parsonage. Last updated 2 years ago.
12 stars 7.76 score 219 scripts 8 dependentsekstroem
MESS:Miscellaneous Esoteric Statistical Scripts
A mixed collection of useful and semi-useful diverse statistical functions, some of which may even be referenced in The R Primer book. See Ekstrøm, C. T. (2016). The R Primer. 2nd edition. Chapman & Hall.
Maintained by Claus Thorn Ekstrøm. Last updated 1 months ago.
biostatisticspower-analysisstatistical-analysisstatistical-methodsstatistical-modelsopenblascpp
4 stars 7.69 score 328 scripts 13 dependentsmikeblazanin
gcplyr:Wrangle and Analyze Growth Curve Data
Easy wrangling and model-free analysis of microbial growth curve data, as commonly output by plate readers. Tools for reshaping common plate reader outputs into 'tidy' formats and merging them with design information, making data easy to work with using 'gcplyr' and other packages. Also streamlines common growth curve processing steps, like smoothing and calculating derivatives, and facilitates model-free characterization and analysis of growth data. See methods at <https://mikeblazanin.github.io/gcplyr/>.
Maintained by Mike Blazanin. Last updated 2 months ago.
30 stars 7.53 score 75 scriptsrezamoammadi
BDgraph:Bayesian Structure Learning in Graphical Models using Birth-Death MCMC
Advanced statistical tools for Bayesian structure learning in undirected graphical models, accommodating continuous, ordinal, discrete, count, and mixed data. It integrates recent advancements in Bayesian graphical models as presented in the literature, including the works of Mohammadi and Wit (2015) <doi:10.1214/14-BA889>, Mohammadi et al. (2021) <doi:10.1080/01621459.2021.1996377>, Dobra and Mohammadi (2018) <doi:10.1214/18-AOAS1164>, and Mohammadi et al. (2023) <doi:10.48550/arXiv.2307.00127>.
Maintained by Reza Mohammadi. Last updated 7 months ago.
8 stars 7.46 score 223 scripts 7 dependentsconsbiol-unibern
SDMtune:Species Distribution Model Selection
User-friendly framework that enables the training and the evaluation of species distribution models (SDMs). The package implements functions for data driven variable selection and model tuning and includes numerous utilities to display the results. All the functions used to select variables or to tune model hyperparameters have an interactive real-time chart displayed in the 'RStudio' viewer pane during their execution.
Maintained by Sergio Vignali. Last updated 3 months ago.
hyperparameter-tuningspecies-distribution-modellingvariable-selectioncpp
25 stars 7.37 score 155 scriptskenaho1
asbio:A Collection of Statistical Tools for Biologists
Contains functions from: Aho, K. (2014) Foundational and Applied Statistics for Biologists using R. CRC/Taylor and Francis, Boca Raton, FL, ISBN: 978-1-4398-7338-0.
Maintained by Ken Aho. Last updated 2 months ago.
5 stars 7.32 score 310 scripts 3 dependentsegenn
rtemis:Machine Learning and Visualization
Advanced Machine Learning and Visualization. Unsupervised Learning (Clustering, Decomposition), Supervised Learning (Classification, Regression), Cross-Decomposition, Bagging, Boosting, Meta-models. Static and interactive graphics.
Maintained by E.D. Gennatas. Last updated 2 months ago.
data-sciencedata-visualizationmachine-learningmachine-learning-libraryvisualization
145 stars 7.09 score 50 scripts 2 dependentsbioc
kebabs:Kernel-Based Analysis of Biological Sequences
The package provides functionality for kernel-based analysis of DNA, RNA, and amino acid sequences via SVM-based methods. As core functionality, kebabs implements following sequence kernels: spectrum kernel, mismatch kernel, gappy pair kernel, and motif kernel. Apart from an efficient implementation of standard position-independent functionality, the kernels are extended in a novel way to take the position of patterns into account for the similarity measure. Because of the flexibility of the kernel formulation, other kernels like the weighted degree kernel or the shifted weighted degree kernel with constant weighting of positions are included as special cases. An annotation-specific variant of the kernels uses annotation information placed along the sequence together with the patterns in the sequence. The package allows for the generation of a kernel matrix or an explicit feature representation in dense or sparse format for all available kernels which can be used with methods implemented in other R packages. With focus on SVM-based methods, kebabs provides a framework which simplifies the usage of existing SVM implementations in kernlab, e1071, and LiblineaR. Binary and multi-class classification as well as regression tasks can be used in a unified way without having to deal with the different functions, parameters, and formats of the selected SVM. As support for choosing hyperparameters, the package provides cross validation - including grouped cross validation, grid search and model selection functions. For easier biological interpretation of the results, the package computes feature weights for all SVMs and prediction profiles which show the contribution of individual sequence positions to the prediction result and indicate the relevance of sequence sections for the learning result and the underlying biological functions.
Maintained by Ulrich Bodenhofer. Last updated 5 months ago.
supportvectormachineclassificationclusteringregressioncpp
6.58 score 47 scripts 3 dependentsserkor1
SLmetrics:Machine Learning Performance Evaluation on Steroids
Performance evaluation metrics for supervised and unsupervised machine learning, statistical learning and artificial intelligence applications. Core computations are implemented in 'C++' for scalability and efficiency.
Maintained by Serkan Korkmaz. Last updated 2 days ago.
cppdata-analysisdata-scienceeigen3machine-learningperformance-metricsrcpprcppeigenstatisticssupervised-learningcppopenmp
22 stars 6.56 scoreradiant-rstats
radiant.model:Model Menu for Radiant: Business Analytics using R and Shiny
The Radiant Model menu includes interfaces for linear and logistic regression, naive Bayes, neural networks, classification and regression trees, model evaluation, collaborative filtering, decision analysis, and simulation. The application extends the functionality in 'radiant.data'.
Maintained by Vincent Nijs. Last updated 6 months ago.
19 stars 6.18 score 80 scripts 2 dependentsbozenne
BuyseTest:Generalized Pairwise Comparisons
Implementation of the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) <doi:10.1002/sim.3923> for complete observations, and extended in Peron (2018) <doi:10.1177/0962280216658320> to deal with right-censoring. GPC compare two groups of observations (intervention vs. control group) regarding several prioritized endpoints to estimate the probability that a random observation drawn from one group performs better/worse/equivalently than a random observation drawn from the other group. Summary statistics such as the net treatment benefit, win ratio, or win odds are then deduced from these probabilities. Confidence intervals and p-values are obtained based on asymptotic results (Ozenne 2021 <doi:10.1177/09622802211037067>), non-parametric bootstrap, or permutations. The software enables the use of thresholds of minimal importance difference, stratification, non-prioritized endpoints (O Brien test), and can handle right-censoring and competing-risks.
Maintained by Brice Ozenne. Last updated 18 days ago.
generalized-pairwise-comparisonsnon-parametricstatisticscpp
5 stars 5.91 score 90 scriptsuscbiostats
aphylo:Statistical Inference and Prediction of Annotations in Phylogenetic Trees
Implements a parsimonious evolutionary model to analyze and predict gene-functional annotations in phylogenetic trees as described in Vega Yon et al. (2021) <doi:10.1371/journal.pcbi.1007948>. Focusing on computational efficiency, 'aphylo' makes it possible to estimate pooled phylogenetic models, including thousands (hundreds) of annotations (trees) in the same run. The package also provides the tools for visualization of annotated phylogenies, calculation of posterior probabilities (prediction) and goodness-of-fit assessment featured in Vega Yon et al. (2021).
Maintained by George Vega Yon. Last updated 1 years ago.
annotationsinferencephylogeneticsrcpparmadillocpp
6 stars 5.49 score 104 scriptsballings
AUC:Threshold Independent Performance Measures for Probabilistic Classifiers
Various functions to compute the area under the curve of selected measures: The area under the sensitivity curve (AUSEC), the area under the specificity curve (AUSPC), the area under the accuracy curve (AUACC), and the area under the receiver operating characteristic curve (AUROC). Support for visualization and partial areas is included.
Maintained by Michel Ballings. Last updated 3 years ago.
5.45 score 424 scripts 7 dependentsblasbenito
spatialRF:Easy Spatial Modeling with Random Forest
Automatic generation and selection of spatial predictors for spatial regression with Random Forest. Spatial predictors are surrogates of variables driving the spatial structure of a response variable. The package offers two methods to generate spatial predictors from a distance matrix among training cases: 1) Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>): computed as the eigenvectors of a weighted matrix of distances; 2) RFsp (Hengl et al. <DOI:10.7717/peerj.5518>): columns of the distance matrix used as spatial predictors. Spatial predictors help minimize the spatial autocorrelation of the model residuals and facilitate an honest assessment of the importance scores of the non-spatial predictors. Additionally, functions to reduce multicollinearity, identify relevant variable interactions, tune random forest hyperparameters, assess model transferability via spatial cross-validation, and explore model results via partial dependence curves and interaction surfaces are included in the package. The modelling functions are built around the highly efficient 'ranger' package (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).
Maintained by Blas M. Benito. Last updated 3 years ago.
random-forestspatial-analysisspatial-regression
114 stars 5.45 score 49 scriptsiangow
farr:Data and Code for Financial Accounting Research
Handy functions and data to support a course book for accounting research. Gow, Ian D. and Tongqing Ding (2024) 'Empirical Research in Accounting: Tools and Methods' <https://iangow.github.io/far_book/>.
Maintained by Ian Gow. Last updated 2 months ago.
17 stars 5.05 score 66 scriptsfvafrcu
HandTill2001:Multiple Class Area under ROC Curve
An S4 implementation of Eq. (3) and Eq. (7) by David J. Hand and Robert J. Till (2001) <DOI:10.1023/A:1010920819831>.
Maintained by Andreas Dominik Cullmann. Last updated 4 years ago.
4.95 score 59 scripts 1 dependentssmartdata-analysis-and-statistics
precmed:Precision Medicine
A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
Maintained by Thomas Debray. Last updated 6 months ago.
4 stars 4.20 score 4 scriptscran
PresenceAbsence:Presence-Absence Model Evaluation
Provides a set of functions useful when evaluating the results of presence-absence models. Package includes functions for calculating threshold dependent measures such as confusion matrices, pcc, sensitivity, specificity, and Kappa, and produces plots of each measure as the threshold is varied. It will calculate optimal threshold choice according to a choice of optimization criteria. It also includes functions to plot the threshold independent ROC curves along with the associated AUC (area under the curve).
Maintained by Elizabeth Freeman. Last updated 2 years ago.
1 stars 4.01 score 9 dependentsmc-schaaf
mousetRajectory:Mouse Trajectory Analyses for Behavioural Scientists
Helping psychologists and other behavioural scientists to analyze mouse movement (and other 2-D trajectory) data. Bundles together several functions that compute spatial measures (e.g., maximum absolute deviation, area under the curve, sample entropy) or provide a shorthand for procedures that are frequently used (e.g., time normalization, linear interpolation, extracting initiation and movement times). For more informationsee Pfister et al. (2024) <doi:10.20982/tqmp.20.3.p217>.
Maintained by Roland Pfister. Last updated 6 months ago.
2 stars 4.00 score 5 scriptshoksanyip
SVMMaj:Implementation of the SVM-Maj Algorithm
Implements the SVM-Maj algorithm to train data with support vector machine <doi:10.1007/s11634-008-0020-9>. This algorithm uses two efficient updates, one for linear kernel and one for the nonlinear kernel.
Maintained by Hoksan Yip. Last updated 4 months ago.
1 stars 3.36 score 23 scriptscran
flux:Flux Rate Calculation from Dynamic Closed Chamber Measurements
Functions for the calculation of greenhouse gas flux rates from closed chamber concentration measurements. The package follows a modular concept: Fluxes can be calculated in just two simple steps or in several steps if more control in details is wanted. Additionally plot and preparation functions as well as functions for modelling gpp and reco are provided.
Maintained by Gerald Jurasinski. Last updated 3 years ago.
2 stars 3.21 score 3 dependentsmathijsdeen
MDMA:Mathijs Deen's Miscellaneous Auxiliaries
Provides a variety of functions useful for data analysis, selection, manipulation, and graphics.
Maintained by Mathijs Deen. Last updated 11 days ago.
2.70 scoretjaki
PK:Basic Non-Compartmental Pharmacokinetics
Estimation of pharmacokinetic parameters using non-compartmental theory.
Maintained by Thomas Jaki. Last updated 2 years ago.
2.59 score 13 scripts 1 dependentscran
longROC:Time-Dependent Prognostic Accuracy with Multiply Evaluated Bio Markers or Scores
Time-dependent Receiver Operating Characteristic curves, Area Under the Curve, and Net Reclassification Indexes for repeated measures. It is based on methods in Barbati and Farcomeni (2017) <doi:10.1007/s10260-017-0410-2>.
Maintained by Alessio Farcomeni. Last updated 7 years ago.
1.00 score