Showing 17 of total 17 results (show query)

danheck

multinomineq:Bayesian Inference for Multinomial Models with Inequality Constraints

Implements Gibbs sampling and Bayes factors for multinomial models with linear inequality constraints on the vector of probability parameters. As special cases, the model class includes models that predict a linear order of binomial probabilities (e.g., p[1] < p[2] < p[3] < .50) and mixture models assuming that the parameter vector p must be inside the convex hull of a finite number of predicted patterns (i.e., vertices). A formal definition of inequality-constrained multinomial models and the implemented computational methods is provided in: Heck, D.W., & Davis-Stober, C.P. (2019). Multinomial models with linear inequality constraints: Overview and improvements of computational methods for Bayesian inference. Journal of Mathematical Psychology, 91, 70-87. <doi:10.1016/j.jmp.2019.03.004>. Inequality-constrained multinomial models have applications in the area of judgment and decision making to fit and test random utility models (Regenwetter, M., Dana, J., & Davis-Stober, C.P. (2011). Transitivity of preferences. Psychological Review, 118, 42–56, <doi:10.1037/a0021150>) or to perform outcome-based strategy classification to select the decision strategy that provides the best account for a vector of observed choice frequencies (Heck, D.W., Hilbig, B.E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26–40. <doi:10.1016/j.cogpsych.2017.05.003>).

Maintained by Daniel W. Heck. Last updated 1 years ago.

openblascppopenmp

12.3 match 4 stars 4.30 score 4 scripts

schloerke

geozoo:Zoo of Geometric Objects

Geometric objects defined in 'geozoo' can be simulated or displayed in the R package 'tourr'.

Maintained by Barret Schloerke. Last updated 9 years ago.

4.5 match 5 stars 5.21 score 100 scripts 2 dependents

cran

tmvmixnorm:Sampling from Truncated Multivariate Normal and t Distributions

Efficient sampling of truncated multivariate (scale) mixtures of normals under linear inequality constraints is nontrivial due to the analytically intractable normalizing constant. Meanwhile, traditional methods may subject to numerical issues, especially when the dimension is high and dependence is strong. Algorithms proposed by Li and Ghosh (2015) <doi: 10.1080/15598608.2014.996690> are adopted for overcoming difficulties in simulating truncated distributions. Efficient rejection sampling for simulating truncated univariate normal distribution is included in the package, which shows superiority in terms of acceptance rate and numerical stability compared to existing methods and R packages. An efficient function for sampling from truncated multivariate normal distribution subject to convex polytope restriction regions based on Gibbs sampler for conditional truncated univariate distribution is provided. By extending the sampling method, a function for sampling truncated multivariate Student's t distribution is also developed. Moreover, the proposed method and computation remain valid for high dimensional and strong dependence scenarios. Empirical results in Li and Ghosh (2015) <doi: 10.1080/15598608.2014.996690> illustrated the superior performance in terms of various criteria (e.g. mixing and integrated auto-correlation time).

Maintained by Ting Fung (Ralph) Ma. Last updated 4 years ago.

0.5 match 2.18 score 5 dependents