Showing 47 of total 47 results (show query)

ropensci

git2rdata:Store and Retrieve Data.frames in a Git Repository

The git2rdata package is an R package for writing and reading dataframes as plain text files. A metadata file stores important information. 1) Storing metadata allows to maintain the classes of variables. By default, git2rdata optimizes the data for file storage. The optimization is most effective on data containing factors. The optimization makes the data less human readable. The user can turn this off when they prefer a human readable format over smaller files. Details on the implementation are available in vignette("plain_text", package = "git2rdata"). 2) Storing metadata also allows smaller row based diffs between two consecutive commits. This is a useful feature when storing data as plain text files under version control. Details on this part of the implementation are available in vignette("version_control", package = "git2rdata"). Although we envisioned git2rdata with a git workflow in mind, you can use it in combination with other version control systems like subversion or mercurial. 3) git2rdata is a useful tool in a reproducible and traceable workflow. vignette("workflow", package = "git2rdata") gives a toy example. 4) vignette("efficiency", package = "git2rdata") provides some insight into the efficiency of file storage, git repository size and speed for writing and reading.

Maintained by Thierry Onkelinx. Last updated 2 months ago.

reproducible-researchversion-control

99 stars 10.03 score 216 scripts 4 dependents

jatanrt

eprscope:Processing and Analysis of Electron Paramagnetic Resonance Data and Spectra in Chemistry

Processing, analysis and plottting of Electron Paramagnetic Resonance (EPR) spectra in chemistry. Even though the package is mainly focused on continuous wave (CW) EPR/ENDOR, many functions may be also used for the integrated forms of 1D PULSED EPR spectra. It is able to find the most important spectral characteristics like g-factor, linewidth, maximum of derivative or integral intensities and single/double integrals. This is especially important in spectral (time) series consisting of many EPR spectra like during variable temperature experiments, electrochemical or photochemical radical generation and/or decay. Package also enables processing of data/spectra for the analytical (quantitative) purposes. Namely, how many radicals or paramagnetic centers can be found in the analyte/sample. The goal is to evaluate rate constants, considering different kinetic models, to describe the radical reactions. The key feature of the package resides in processing of the universal ASCII text formats (such as '.txt', '.csv' or '.asc') from scratch. No proprietary formats are used (except the MATLAB EasySpin outputs) and in such respect the package is in accordance with the FAIR data principles. Upon 'reading' (also providing automatic procedures for the most common EPR spectrometers) the spectral data are transformed into the universal R 'data frame' format. Subsequently, the EPR spectra can be visualized and are fully consistent either with the 'ggplot2' package or with the interactive formats based on 'plotly'. Additionally, simulations and fitting of the isotropic EPR spectra are also included in the package. Advanced simulation parameters provided by the MATLAB-EasySpin toolbox and results from the quantum chemical calculations like g-factor and hyperfine splitting/coupling constants (a/A) can be compared and summarized in table-format in order to analyze the EPR spectra by the most effective way.

Maintained by Ján Tarábek. Last updated 18 hours ago.

chemistrydata-analysisdata-visualizationepresrfittingoptimizationprogramming-languagereproducible-researchscientific-plottingspectroscopyopenjdk

4.76 score 7 scripts

illustratien

toolStability:Tool for Stability Indices Calculation

Tools to calculate stability indices with parametric, non-parametric and probabilistic approaches. The basic data format requirement for 'toolStability' is a data frame with 3 columns including numeric trait values, genotype,and environmental labels. Output format of each function is the dataframe with chosen stability index for each genotype. Function "table_stability" offers the summary table of all stability indices in this package. This R package toolStability is part of the main publication: Wang, Casadebaig and Chen (2023) <doi:10.1007/s00122-023-04264-7>. Analysis pipeline for main publication can be found on github: <https://github.com/Illustratien/Wang_2023_TAAG/tree/V1.0.0>. Sample dataset in this package is derived from another publication: Casadebaig P, Zheng B, Chapman S et al. (2016) <doi:10.1371/journal.pone.0146385>. For detailed documentation of dataset, please see on Zenodo <doi:10.5281/zenodo.4729636>. Indices used in this package are from: Döring TF, Reckling M (2018) <doi:10.1016/j.eja.2018.06.007>. Eberhart SA, Russell WA (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>. Eskridge KM (1990) <doi:10.2135/cropsci1990.0011183X003000020025x>. Finlay KW, Wilkinson GN (1963) <doi:10.1071/AR9630742>. Hanson WD (1970) Genotypic stability. <doi:10.1007/BF00285245>. Lin CS, Binns MR (1988) <https://cdnsciencepub.com/doi/abs/10.4141/cjps88-018>. Nassar R, Hühn M (1987). Pinthus MJ (1973) <doi:10.1007/BF00021563>. Römer T (1917). Shukla GK (1972). Wricke G (1962).

Maintained by Tien-Cheng Wang. Last updated 1 years ago.

analysis-packagereproducible-researchstability

1 stars 3.74 score 11 scripts

haghish

HMDA:Holistic Multimodel Domain Analysis for Exploratory Machine Learning

Holistic Multimodel Domain Analysis (HMDA) is a robust and transparent framework designed for exploratory machine learning research, aiming to enhance the process of feature assessment and selection. HMDA addresses key limitations of traditional machine learning methods by evaluating the consistency across multiple high-performing models within a fine-tuned modeling grid, thereby improving the interpretability and reliability of feature importance assessments. Specifically, it computes Weighted Mean SHapley Additive exPlanations (WMSHAP), which aggregate feature contributions from multiple models based on weighted performance metrics. HMDA also provides confidence intervals to demonstrate the stability of these feature importance estimates. This framework is particularly beneficial for analyzing complex, multidimensional datasets common in health research, supporting reliable exploration of mental health outcomes such as suicidal ideation, suicide attempts, and other psychological conditions. Additionally, HMDA includes automated procedures for feature selection based on WMSHAP ratios and performs dimension reduction analyses to identify underlying structures among features. For more details see Haghish (2025) <doi:10.13140/RG.2.2.32473.63846>.

Maintained by E. F. Haghish. Last updated 5 hours ago.

ensemble-feature-importanceexplainable-aiexplainable-artificial-intelligenceexplainable-machine-learningexplainable-mlexploratory-machine-learningexploratory-modellingfeature-importancefeature-selection-methodsholistic-modelingholistic-multimodel-domain-analysismultimodel-ensemblereproducible-aireproducible-researchrobust-feature-selectionshapley-additive-explanationsshapley-valuestransparent-aiweighted-mean-shapwmshap

1 stars 3.48 score