Showing 200 of total 707 results (show query)

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

83 stars 10.26 score 368 scripts 1 dependents

mlampros

OpenImageR:An Image Processing Toolkit

Incorporates functions for image preprocessing, filtering and image recognition. The package takes advantage of 'RcppArmadillo' to speed up computationally intensive functions. The histogram of oriented gradients descriptor is a modification of the 'findHOGFeatures' function of the 'SimpleCV' computer vision platform, the average_hash(), dhash() and phash() functions are based on the 'ImageHash' python library. The Gabor Feature Extraction functions are based on 'Matlab' code of the paper, "CloudID: Trustworthy cloud-based and cross-enterprise biometric identification" by M. Haghighat, S. Zonouz, M. Abdel-Mottaleb, Expert Systems with Applications, vol. 42, no. 21, pp. 7905-7916, 2015, <doi:10.1016/j.eswa.2015.06.025>. The 'SLIC' and 'SLICO' superpixel algorithms were explained in detail in (i) "SLIC Superpixels Compared to State-of-the-art Superpixel Methods", Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Suesstrunk, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, num. 11, p. 2274-2282, May 2012, <doi:10.1109/TPAMI.2012.120> and (ii) "SLIC Superpixels", Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Suesstrunk, EPFL Technical Report no. 149300, June 2010.

Maintained by Lampros Mouselimis. Last updated 2 years ago.

filteringgabor-feature-extractiongabor-filtershog-featuresimageimage-hashingprocessingrcpparmadillorecognitionslicslicosuperpixelsopenblascppopenmp

60 stars 9.86 score 358 scripts 8 dependents

jasonjfoster

roll:Rolling and Expanding Statistics

Fast and efficient computation of rolling and expanding statistics for time-series data.

Maintained by Jason Foster. Last updated 2 months ago.

algorithmsrcppstatisticsopenblascppopenmp

116 stars 9.76 score 318 scripts 13 dependents

kss2k

modsem:Latent Interaction (and Moderation) Analysis in Structural Equation Models (SEM)

Estimation of interaction (i.e., moderation) effects between latent variables in structural equation models (SEM). The supported methods are: The constrained approach (Algina & Moulder, 2001). The unconstrained approach (Marsh et al., 2004). The residual centering approach (Little et al., 2006). The double centering approach (Lin et al., 2010). The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000). The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007) (temporarily unavailable) The constrained- unconstrained, residual- and double centering- approaches are estimated via 'lavaan' (Rosseel, 2012), whilst the LMS- and QML- approaches are estimated via 'modsem' it self. Alternatively model can be estimated via 'Mplus' (Muthén & Muthén, 1998-2017). References: Algina, J., & Moulder, B. C. (2001). <doi:10.1207/S15328007SEM0801_3>. "A note on estimating the Jöreskog-Yang model for latent variable interaction using 'LISREL' 8.3." Klein, A., & Moosbrugger, H. (2000). <doi:10.1007/BF02296338>. "Maximum likelihood estimation of latent interaction effects with the LMS method." Klein, A. G., & Muthén, B. O. (2007). <doi:10.1080/00273170701710205>. "Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects." Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). <doi:10.1080/10705511.2010.488999>. "Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies." Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). <doi:10.1207/s15328007sem1304_1>. "On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables." Marsh, H. W., Wen, Z., & Hau, K. T. (2004). <doi:10.1037/1082-989X.9.3.275>. "Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction." Muthén, L.K. and Muthén, B.O. (1998-2017). "'Mplus' User’s Guide. Eighth Edition." <https://www.statmodel.com/>. Rosseel Y (2012). <doi:10.18637/jss.v048.i02>. "'lavaan': An R Package for Structural Equation Modeling."

Maintained by Kjell Solem Slupphaug. Last updated 1 days ago.

interaction-effectinteraction-effectslatent-moderated-structural-equationslavaan-syntaxlmsmoderationqmlquasi-maximum-likelihoodrlangrlanguagesemstructural-equation-modelingstructural-equation-modelsopenblascppopenmp

6 stars 8.41 score 54 scripts

alexiosg

rmgarch:Multivariate GARCH Models

Feasible multivariate GARCH models including DCC, GO-GARCH and Copula-GARCH.

Maintained by Alexios Galanos. Last updated 3 months ago.

openblascppopenmp

14 stars 8.11 score 294 scripts 1 dependents

eco-hydro

phenofit:Extract Remote Sensing Vegetation Phenology

The merits of 'TIMESAT' and 'phenopix' are adopted. Besides, a simple and growing season dividing method and a practical snow elimination method based on Whittaker were proposed. 7 curve fitting methods and 4 phenology extraction methods were provided. Parameters boundary are considered for every curve fitting methods according to their ecological meaning. And 'optimx' is used to select best optimization method for different curve fitting methods. Reference: Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>; Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. <doi:10.1029/2020JG005636>; Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24; Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 248, 408–417. <doi:10.1016/j.agrformet.2017.10.026>.

Maintained by Dongdong Kong. Last updated 2 months ago.

phenologyremote-sensingopenblascppopenmp

78 stars 7.71 score 332 scripts

bsvars

bsvars:Bayesian Estimation of Structural Vector Autoregressive Models

Provides fast and efficient procedures for Bayesian analysis of Structural Vector Autoregressions. This package estimates a wide range of models, including homo-, heteroskedastic, and non-normal specifications. Structural models can be identified by adjustable exclusion restrictions, time-varying volatility, or non-normality. They all include a flexible three-level equation-specific local-global hierarchical prior distribution for the estimated level of shrinkage for autoregressive and structural parameters. Additionally, the package facilitates predictive and structural analyses such as impulse responses, forecast error variance and historical decompositions, forecasting, verification of heteroskedasticity, non-normality, and hypotheses on autoregressive parameters, as well as analyses of structural shocks, volatilities, and fitted values. Beautiful plots, informative summary functions, and extensive documentation including the vignette by Woźniak (2024) <doi:10.48550/arXiv.2410.15090> complement all this. The implemented techniques align closely with those presented in Lütkepohl, Shang, Uzeda, & Woźniak (2024) <doi:10.48550/arXiv.2404.11057>, Lütkepohl & Woźniak (2020) <doi:10.1016/j.jedc.2020.103862>, and Song & Woźniak (2021) <doi:10.1093/acrefore/9780190625979.013.174>. The 'bsvars' package is aligned regarding objects, workflows, and code structure with the R package 'bsvarSIGNs' by Wang & Woźniak (2024) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset.

Maintained by Tomasz Woźniak. Last updated 2 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

46 stars 7.67 score 32 scripts 1 dependents

blasern

rdist:Calculate Pairwise Distances

A common framework for calculating distance matrices.

Maintained by Nello Blaser. Last updated 2 years ago.

openblascppopenmp

17 stars 7.45 score 203 scripts 11 dependents

gagolews

genieclust:Fast and Robust Hierarchical Clustering with Noise Points Detection

A retake on the Genie algorithm (Gagolewski, 2021 <DOI:10.1016/j.softx.2021.100722>), which is a robust hierarchical clustering method (Gagolewski, Bartoszuk, Cena, 2016 <DOI:10.1016/j.ins.2016.05.003>). It is now faster and more memory efficient; determining the whole cluster hierarchy for datasets of 10M points in low dimensional Euclidean spaces or 100K points in high-dimensional ones takes only a minute or so. Allows clustering with respect to mutual reachability distances so that it can act as a noise point detector or a robustified version of 'HDBSCAN*' (that is able to detect a predefined number of clusters and hence it does not dependent on the somewhat fragile 'eps' parameter). The package also features an implementation of inequality indices (e.g., Gini and Bonferroni), external cluster validity measures (e.g., the normalised clustering accuracy, the adjusted Rand index, the Fowlkes-Mallows index, and normalised mutual information), and internal cluster validity indices (e.g., the Calinski-Harabasz, Davies-Bouldin, Ball-Hall, Silhouette, and generalised Dunn indices). See also the 'Python' version of 'genieclust' available on 'PyPI', which supports sparse data, more metrics, and even larger datasets.

Maintained by Marek Gagolewski. Last updated 8 days ago.

cluster-analysisclusteringclustering-algorithmdata-analysisdata-miningdata-sciencegeniehdbscanhierarchical-clusteringhierarchical-clustering-algorithmmachine-learningmachine-learning-algorithmsmlpacknmslibpythonpython3sparsecppopenmp

61 stars 7.33 score 13 scripts 5 dependents

lcrawlab

mvMAPIT:Multivariate Genome Wide Marginal Epistasis Test

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the 'multivariate MArginal ePIstasis Test' ('mvMAPIT') – a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact – thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed 'mvMAPIT' builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate 'mvMAPIT' as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.

Maintained by Julian Stamp. Last updated 5 months ago.

cppepistasisepistasis-analysisgwasgwas-toolslinear-mixed-modelsmapitmvmapitvariance-componentsopenblascppopenmp

11 stars 6.90 score 17 scripts 1 dependents

david-cortes

cmfrec:Collective Matrix Factorization for Recommender Systems

Collective matrix factorization (a.k.a. multi-view or multi-way factorization, Singh, Gordon, (2008) <doi:10.1145/1401890.1401969>) tries to approximate a (potentially very sparse or having many missing values) matrix 'X' as the product of two low-dimensional matrices, optionally aided with secondary information matrices about rows and/or columns of 'X', which are also factorized using the same latent components. The intended usage is for recommender systems, dimensionality reduction, and missing value imputation. Implements extensions of the original model (Cortes, (2018) <arXiv:1809.00366>) and can produce different factorizations such as the weighted 'implicit-feedback' model (Hu, Koren, Volinsky, (2008) <doi:10.1109/ICDM.2008.22>), the 'weighted-lambda-regularization' model, (Zhou, Wilkinson, Schreiber, Pan, (2008) <doi:10.1007/978-3-540-68880-8_32>), or the enhanced model with 'implicit features' (Rendle, Zhang, Koren, (2019) <arXiv:1905.01395>), with or without side information. Can use gradient-based procedures or alternating-least squares procedures (Koren, Bell, Volinsky, (2009) <doi:10.1109/MC.2009.263>), with either a Cholesky solver, a faster conjugate gradient solver (Takacs, Pilaszy, Tikk, (2011) <doi:10.1145/2043932.2043987>), or a non-negative coordinate descent solver (Franc, Hlavac, Navara, (2005) <doi:10.1007/11556121_50>), providing efficient methods for sparse and dense data, and mixtures thereof. Supports L1 and L2 regularization in the main models, offers alternative most-popular and content-based models, and implements functionality for cold-start recommendations and imputation of 2D data.

Maintained by David Cortes. Last updated 3 months ago.

cold-startcollaborative-filteringcollective-matrix-factorizationopenblasopenmp

120 stars 6.84 score 23 scripts

bachmannpatrick

CLVTools:Tools for Customer Lifetime Value Estimation

A set of state-of-the-art probabilistic modeling approaches to derive estimates of individual customer lifetime values (CLV). Commonly, probabilistic approaches focus on modelling 3 processes, i.e. individuals' attrition, transaction, and spending process. Latent customer attrition models, which are also known as "buy-'til-you-die models", model the attrition as well as the transaction process. They are used to make inferences and predictions about transactional patterns of individual customers such as their future purchase behavior. Moreover, these models have also been used to predict individuals’ long-term engagement in activities such as playing an online game or posting to a social media platform. The spending process is usually modelled by a separate probabilistic model. Combining these results yields in lifetime values estimates for individual customers. This package includes fast and accurate implementations of various probabilistic models for non-contractual settings (e.g., grocery purchases or hotel visits). All implementations support time-invariant covariates, which can be used to control for e.g., socio-demographics. If such an extension has been proposed in literature, we further provide the possibility to control for time-varying covariates to control for e.g., seasonal patterns. Currently, the package includes the following latent attrition models to model individuals' attrition and transaction process: [1] Pareto/NBD model (Pareto/Negative-Binomial-Distribution), [2] the Extended Pareto/NBD model (Pareto/Negative-Binomial-Distribution with time-varying covariates), [3] the BG/NBD model (Beta-Gamma/Negative-Binomial-Distribution) and the [4] GGom/NBD (Gamma-Gompertz/Negative-Binomial-Distribution). Further, we provide an implementation of the Gamma/Gamma model to model the spending process of individuals.

Maintained by Patrick Bachmann. Last updated 4 months ago.

clvcustomer-lifetime-valuecustomer-relationship-managementopenblasgslcppopenmp

55 stars 6.47 score 12 scripts

miicteam

miic:Learning Causal or Non-Causal Graphical Models Using Information Theory

Multivariate Information-based Inductive Causation, better known by its acronym MIIC, is a causal discovery method, based on information theory principles, which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The recent more interpretable MIIC extension (iMIIC) further distinguishes genuine causes from putative and latent causal effects, while scaling to very large datasets (hundreds of thousands of samples). Since the version 2.0, MIIC also includes a temporal mode (tMIIC) to learn temporal causal graphs from stationary time series data. MIIC has been applied to a wide range of biological and biomedical data, such as single cell gene expression data, genomic alterations in tumors, live-cell time-lapse imaging data (CausalXtract), as well as medical records of patients. MIIC brings unique insights based on causal interpretation and could be used in a broad range of other data science domains (technology, climatology, economy, ...). For more information, you can refer to: Simon et al., eLife 2024, <doi:10.1101/2024.02.06.579177>, Ribeiro-Dantas et al., iScience 2024, <doi:10.1016/j.isci.2024.109736>, Cabeli et al., NeurIPS 2021, <https://why21.causalai.net/papers/WHY21_24.pdf>, Cabeli et al., Comput. Biol. 2020, <doi:10.1371/journal.pcbi.1007866>, Li et al., NeurIPS 2019, <https://papers.nips.cc/paper/9573-constraint-based-causal-structure-learning-with-consistent-separating-sets>, Verny et al., PLoS Comput. Biol. 2017, <doi:10.1371/journal.pcbi.1005662>, Affeldt et al., UAI 2015, <https://auai.org/uai2015/proceedings/papers/293.pdf>. Changes from the previous 1.5.3 release on CRAN are available at <https://github.com/miicTeam/miic_R_package/blob/master/NEWS.md>.

Maintained by Franck Simon. Last updated 6 months ago.

cppopenmp

27 stars 6.22 score 69 scripts

bsvars

bsvarSIGNs:Bayesian SVARs with Sign, Zero, and Narrative Restrictions

Implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions (SVARs) identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in Giannone, Lenza, Primiceri (2015) <doi:10.1162/REST_a_00483>. The sign restrictions are implemented employing the methods proposed by Rubio-Ramírez, Waggoner & Zha (2010) <doi:10.1111/j.1467-937X.2009.00578.x>, while identification through sign and zero restrictions follows the approach developed by Arias, Rubio-Ramírez, & Waggoner (2018) <doi:10.3982/ECTA14468>. Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by Antolín-Díaz and Rubio-Ramírez (2018) <doi:10.1257/aer.20161852>. Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation including the vignette by Wang & Woźniak (2024) <doi:10.48550/arXiv.2501.16711>. The 'bsvarSIGNs' package is aligned regarding objects, workflows, and code structure with the R package 'bsvars' by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars>, and they constitute an integrated toolset. It was granted the Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in 2024.

Maintained by Xiaolei Wang. Last updated 2 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

13 stars 6.21 score 10 scripts