Showing 32 of total 32 results (show query)
yrosseel
lavaan:Latent Variable Analysis
Fit a variety of latent variable models, including confirmatory factor analysis, structural equation modeling and latent growth curve models.
Maintained by Yves Rosseel. Last updated 3 days ago.
factor-analysisgrowth-curve-modelslatent-variablesmissing-datamultilevel-modelsmultivariate-analysispath-analysispsychometricsstatistical-modelingstructural-equation-modeling
454 stars 16.82 score 8.4k scripts 218 dependentsamices
mice:Multivariate Imputation by Chained Equations
Multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. Each variable has its own imputation model. Built-in imputation models are provided for continuous data (predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression) and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.
Maintained by Stef van Buuren. Last updated 1 days ago.
chained-equationsfcsimputationmicemissing-datamissing-valuesmultiple-imputationmultivariate-datacpp
462 stars 16.64 score 10k scripts 154 dependentsnjtierney
naniar:Data Structures, Summaries, and Visualisations for Missing Data
Missing values are ubiquitous in data and need to be explored and handled in the initial stages of analysis. 'naniar' provides data structures and functions that facilitate the plotting of missing values and examination of imputations. This allows missing data dependencies to be explored with minimal deviation from the common work patterns of 'ggplot2' and tidy data. The work is fully discussed at Tierney & Cook (2023) <doi:10.18637/jss.v105.i07>.
Maintained by Nicholas Tierney. Last updated 17 days ago.
data-visualisationggplot2missing-datamissingnesstidy-data
657 stars 15.63 score 5.1k scripts 9 dependentssimongrund1
mitml:Tools for Multiple Imputation in Multilevel Modeling
Provides tools for multiple imputation of missing data in multilevel modeling. Includes a user-friendly interface to the packages 'pan' and 'jomo', and several functions for visualization, data management and the analysis of multiply imputed data sets.
Maintained by Simon Grund. Last updated 1 years ago.
imputationmissing-datamixed-effectsmultilevel-datamultilevel-models
29 stars 12.36 score 246 scripts 153 dependentssteffenmoritz
imputeTS:Time Series Missing Value Imputation
Imputation (replacement) of missing values in univariate time series. Offers several imputation functions and missing data plots. Available imputation algorithms include: 'Mean', 'LOCF', 'Interpolation', 'Moving Average', 'Seasonal Decomposition', 'Kalman Smoothing on Structural Time Series models', 'Kalman Smoothing on ARIMA models'. Published in Moritz and Bartz-Beielstein (2017) <doi:10.32614/RJ-2017-009>.
Maintained by Steffen Moritz. Last updated 3 years ago.
data-visualizationimputationimputation-algorithmimputetsmissing-datatime-seriescpp
162 stars 12.18 score 1.9k scripts 27 dependentsecmerkle
blavaan:Bayesian Latent Variable Analysis
Fit a variety of Bayesian latent variable models, including confirmatory factor analysis, structural equation models, and latent growth curve models. References: Merkle & Rosseel (2018) <doi:10.18637/jss.v085.i04>; Merkle et al. (2021) <doi:10.18637/jss.v100.i06>.
Maintained by Edgar Merkle. Last updated 10 days ago.
bayesian-statisticsfactor-analysisgrowth-curve-modelslatent-variablesmissing-datamultilevel-modelsmultivariate-analysispath-analysispsychometricsstatistical-modelingstructural-equation-modelingcpp
92 stars 10.84 score 183 scripts 3 dependentsmikewlcheung
metaSEM:Meta-Analysis using Structural Equation Modeling
A collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the 'OpenMx' and 'lavaan' packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.
Maintained by Mike Cheung. Last updated 23 days ago.
meta-analysismeta-analytic-semmissing-datamultilevel-modelsmultivariate-analysisstructural-equation-modelingstructural-equation-models
30 stars 9.43 score 208 scripts 1 dependentsalexanderrobitzsch
miceadds:Some Additional Multiple Imputation Functions, Especially for 'mice'
Contains functions for multiple imputation which complements existing functionality in R. In particular, several imputation methods for the mice package (van Buuren & Groothuis-Oudshoorn, 2011, <doi:10.18637/jss.v045.i03>) are implemented. Main features of the miceadds package include plausible value imputation (Mislevy, 1991, <doi:10.1007/BF02294457>), multilevel imputation for variables at any level or with any number of hierarchical and non-hierarchical levels (Grund, Luedtke & Robitzsch, 2018, <doi:10.1177/1094428117703686>; van Buuren, 2018, Ch.7, <doi:10.1201/9780429492259>), imputation using partial least squares (PLS) for high dimensional predictors (Robitzsch, Pham & Yanagida, 2016), nested multiple imputation (Rubin, 2003, <doi:10.1111/1467-9574.00217>), substantive model compatible imputation (Bartlett et al., 2015, <doi:10.1177/0962280214521348>), and features for the generation of synthetic datasets (Reiter, 2005, <doi:10.1111/j.1467-985X.2004.00343.x>; Nowok, Raab, & Dibben, 2016, <doi:10.18637/jss.v074.i11>).
Maintained by Alexander Robitzsch. Last updated 29 days ago.
missing-datamultiple-imputationopenblascpp
16 stars 9.16 score 542 scripts 9 dependentsjapal
zCompositions:Treatment of Zeros, Left-Censored and Missing Values in Compositional Data Sets
Principled methods for the imputation of zeros, left-censored and missing data in compositional data sets (Palarea-Albaladejo and Martin-Fernandez (2015) <doi:10.1016/j.chemolab.2015.02.019>).
Maintained by Javier Palarea-Albaladejo. Last updated 9 months ago.
censored-datacompositional-dataimputation-methodsmissing-datanondetection
7 stars 8.40 score 370 scripts 11 dependentsnerler
JointAI:Joint Analysis and Imputation of Incomplete Data
Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a 'JAGS' model, which will then automatically be passed to 'JAGS' <https://mcmc-jags.sourceforge.io/> with the help of the package 'rjags'.
Maintained by Nicole S. Erler. Last updated 12 months ago.
bayesiangeneralized-linear-modelsglmglmmimputationimputationsjagsjoint-analysislinear-mixed-modelslinear-regression-modelsmcmc-samplemcmc-samplingmissing-datamissing-valuessurvivalcpp
28 stars 7.30 score 59 scripts 1 dependentsfarrellday
miceRanger:Multiple Imputation by Chained Equations with Random Forests
Multiple Imputation has been shown to be a flexible method to impute missing values by Van Buuren (2007) <doi:10.1177/0962280206074463>. Expanding on this, random forests have been shown to be an accurate model by Stekhoven and Buhlmann <arXiv:1105.0828> to impute missing values in datasets. They have the added benefits of returning out of bag error and variable importance estimates, as well as being simple to run in parallel.
Maintained by Sam Wilson. Last updated 3 years ago.
imputation-methodsmachine-learningmicemissing-datamissing-valuesrandom-forests
67 stars 7.09 score 41 scripts 1 dependentsmodal-inria
RMixtComp:Mixture Models with Heterogeneous and (Partially) Missing Data
Mixture Composer (Biernacki (2015) <https://inria.hal.science/hal-01253393v1>) is a project to perform clustering using mixture models with heterogeneous data and partially missing data. Mixture models are fitted using a SEM algorithm. It includes 8 models for real, categorical, counting, functional and ranking data.
Maintained by Quentin Grimonprez. Last updated 11 months ago.
clusteringcppheterogeneous-datamissing-datamixed-datamixture-modelstatistics
13 stars 6.10 score 12 scriptsbioc
BEclear:Correction of batch effects in DNA methylation data
Provides functions to detect and correct for batch effects in DNA methylation data. The core function is based on latent factor models and can also be used to predict missing values in any other matrix containing real numbers.
Maintained by Livia Rasp. Last updated 5 months ago.
batcheffectdnamethylationsoftwarepreprocessingstatisticalmethodbatch-effectsbioconductor-packagedna-methylationlatent-factor-modelmethylationmissing-datamissing-valuesstochastic-gradient-descentcpp
4 stars 5.90 score 11 scriptstirgit
missCompare:Intuitive Missing Data Imputation Framework
Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as 'mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.
Maintained by Tibor V. Varga. Last updated 4 years ago.
comparisoncomparison-benchmarksimputationimputation-algorithmimputation-methodsimputationskolmogorov-smirnovmissingmissing-datamissing-data-imputationmissing-status-checkmissing-valuesmissingnesspost-imputation-diagnosticsrmse
39 stars 5.89 score 40 scriptsnelson-gon
mde:Missing Data Explorer
Correct identification and handling of missing data is one of the most important steps in any analysis. To aid this process, 'mde' provides a very easy to use yet robust framework to quickly get an idea of where the missing data lies and therefore find the most appropriate action to take. Graham WJ (2009) <doi:10.1146/annurev.psych.58.110405.085530>.
Maintained by Nelson Gonzabato. Last updated 3 years ago.
data-analysisdata-cleaningdata-explorationdata-sciencedatacleanerdatacleaningexploratory-data-analysismissingmissing-datamissing-value-treatmentmissing-valuesmissingnessomitrecodereplacestatistics
4 stars 5.61 score 34 scriptsgrosssbm
missSBM:Handling Missing Data in Stochastic Block Models
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>, adjusts the popular stochastic block model from network data sampled under various missing data conditions, as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.
Maintained by Julien Chiquet. Last updated 17 days ago.
missing-datanasnetwork-analysisnetwork-datasetstochastic-block-modelcpp
12 stars 5.53 score 19 scriptsangabrio
missingHE:Missing Outcome Data in Health Economic Evaluation
Contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using the software 'JAGS' (which should be installed locally and which is loaded in 'missingHE' via the 'R' package 'R2jags'). Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, 'missingHE' provides a set of specialised functions to assess model convergence and fit, and to summarise the statistical and economic results using different types of measures and graphs. The methods implemented are described in Mason (2018) <doi:10.1002/hec.3793>, Molenberghs (2000) <doi:10.1007/978-1-4419-0300-6_18> and Gabrio (2019) <doi:10.1002/sim.8045>.
Maintained by Andrea Gabrio. Last updated 2 years ago.
cost-effectiveness-analysishealth-economic-evaluationindividual-level-datajagsmissing-dataparametric-modellingsensitivity-analysiscpp
5 stars 5.38 score 24 scriptselliecurnow
midoc:A Decision-Making System for Multiple Imputation
A guidance system for analysis with missing data. It incorporates expert, up-to-date methodology to help researchers choose the most appropriate analysis approach when some data are missing. You provide the available data and the assumed causal structure, including the likely causes of missing data. 'midoc' will advise which analysis approaches can be used, and how best to perform them. 'midoc' follows the framework for the treatment and reporting of missing data in observational studies (TARMOS). Lee et al (2021). <doi:10.1016/j.jclinepi.2021.01.008>.
Maintained by Elinor Curnow. Last updated 6 months ago.
missing-datamultiple-imputation
6 stars 5.32 score 8 scriptsmodal-inria
RMixtCompUtilities:Utility Functions for 'MixtComp' Outputs
Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. This package contains graphical, getter and some utility functions to facilitate the analysis of 'MixtComp' output.
Maintained by Quentin Grimonprez. Last updated 11 months ago.
clusteringcppheterogeneous-datamissing-datamixed-datamixture-modelstatistics
13 stars 5.19 score 2 scripts 1 dependentsbioc
MAI:Mechanism-Aware Imputation
A two-step approach to imputing missing data in metabolomics. Step 1 uses a random forest classifier to classify missing values as either Missing Completely at Random/Missing At Random (MCAR/MAR) or Missing Not At Random (MNAR). MCAR/MAR are combined because it is often difficult to distinguish these two missing types in metabolomics data. Step 2 imputes the missing values based on the classified missing mechanisms, using the appropriate imputation algorithms. Imputation algorithms tested and available for MCAR/MAR include Bayesian Principal Component Analysis (BPCA), Multiple Imputation No-Skip K-Nearest Neighbors (Multi_nsKNN), and Random Forest. Imputation algorithms tested and available for MNAR include nsKNN and a single imputation approach for imputation of metabolites where left-censoring is present.
Maintained by Jonathan Dekermanjian. Last updated 5 months ago.
softwaremetabolomicsstatisticalmethodclassificationimputation-methodsmachine-learningmissing-data
2 stars 5.00 score 6 scriptsfeiyoung
ILSE:Linear Regression Based on 'ILSE' for Missing Data
Linear regression when covariates include missing values by embedding the correlation information between covariates. Especially for block missing data, it works well. 'ILSE' conducts imputation and regression simultaneously and iteratively. More details can be referred to Huazhen Lin, Wei Liu and Wei Lan. (2021) <doi:10.1080/07350015.2019.1635486>.
Maintained by Wei Liu. Last updated 1 years ago.
fimlilselinear-regressionmissing-dataopenblascpp
2 stars 4.95 score 3 scriptssteffenmoritz
imputeR:A General Multivariate Imputation Framework
Multivariate Expectation-Maximization (EM) based imputation framework that offers several different algorithms. These include regularisation methods like Lasso and Ridge regression, tree-based models and dimensionality reduction methods like PCA and PLS.
Maintained by Steffen Moritz. Last updated 4 years ago.
16 stars 4.94 score 54 scriptshaghish
mlim:Single and Multiple Imputation with Automated Machine Learning
Machine learning algorithms have been used for performing single missing data imputation and most recently, multiple imputations. However, this is the first attempt for using automated machine learning algorithms for performing both single and multiple imputation. Automated machine learning is a procedure for fine-tuning the model automatic, performing a random search for a model that results in less error, without overfitting the data. The main idea is to allow the model to set its own parameters for imputing each variable separately instead of setting fixed predefined parameters to impute all variables of the dataset. Using automated machine learning, the package fine-tunes an Elastic Net (default) or Gradient Boosting, Random Forest, Deep Learning, Extreme Gradient Boosting, or Stacked Ensemble machine learning model (from one or a combination of other supported algorithms) for imputing the missing observations. This procedure has been implemented for the first time by this package and is expected to outperform other packages for imputing missing data that do not fine-tune their models. The multiple imputation is implemented via bootstrapping without letting the duplicated observations to harm the cross-validation procedure, which is the way imputed variables are evaluated. Most notably, the package implements automated procedure for handling imputing imbalanced data (class rarity problem), which happens when a factor variable has a level that is far more prevalent than the other(s). This is known to result in biased predictions, hence, biased imputation of missing data. However, the autobalancing procedure ensures that instead of focusing on maximizing accuracy (classification error) in imputing factor variables, a fairer procedure and imputation method is practiced.
Maintained by E. F. Haghish. Last updated 8 months ago.
automatic-machine-learningautomlclassimbalancedata-scienceelastic-netextreme-gradient-boostinggbmglmgradient-boostinggradient-boosting-machineimputationimputation-algorithmimputation-methodsmachine-learningmissing-datamultipleimputationstack-ensemble
31 stars 4.49 score 7 scriptsshangzhi-hong
RfEmpImp:Multiple Imputation using Chained Random Forests
An R package for multiple imputation using chained random forests. Implemented methods can handle missing data in mixed types of variables by using prediction-based or node-based conditional distributions constructed using random forests. For prediction-based imputation, the method based on the empirical distribution of out-of-bag prediction errors of random forests and the method based on normality assumption for prediction errors of random forests are provided for imputing continuous variables. And the method based on predicted probabilities is provided for imputing categorical variables. For node-based imputation, the method based on the conditional distribution formed by the predicting nodes of random forests, and the method based on proximity measures of random forests are provided. More details of the statistical methods can be found in Hong et al. (2020) <arXiv:2004.14823>.
Maintained by Shangzhi Hong. Last updated 2 years ago.
imputationmissing-datarandom-forest
5 stars 4.40 score 8 scriptsxsswang
remiod:Reference-Based Multiple Imputation for Ordinal/Binary Response
Reference-based multiple imputation of ordinal and binary responses under Bayesian framework, as described in Wang and Liu (2022) <arXiv:2203.02771>. Methods for missing-not-at-random include Jump-to-Reference (J2R), Copy Reference (CR), and Delta Adjustment which can generate tipping point analysis.
Maintained by Tony Wang. Last updated 2 years ago.
bayesiancontrol-basedcopy-referencedelta-adjustmentgeneralized-linear-modelsglmjagsjump-to-referencemcmcmissing-at-randommissing-datamissing-not-at-randommultiple-imputationnon-ignorableordinal-regressionpattern-mixture-modelreference-basedstatisticscpp
4.30 score 3 scriptsalexanderrobitzsch
mdmb:Model Based Treatment of Missing Data
Contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>; Luedtke, Robitzsch, & West, 2020a, 2020b; <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.
Maintained by Alexander Robitzsch. Last updated 9 months ago.
missing-datamultiple-imputationopenblascpp
4 stars 3.78 score 26 scriptshlorenzo
ddsPLS:Data-Driven Sparse Partial Least Squares
A sparse Partial Least Squares implementation which uses soft-threshold estimation of the covariance matrices and therein introduces sparsity. Number of components and regularization coefficients are automatically set.
Maintained by Hadrien Lorenzo. Last updated 1 years ago.
missing-datamulti-blockplssupervised-learningsvdvariable-selectioncpp
3.70 score 7 scriptsyixiao-zeng
missoNet:Missingness in Multi-Task Regression with Network Estimation
Efficient procedures for fitting conditional graphical lasso models that link a set of predictor variables to a set of response variables (or tasks), even when the response data may contain missing values. 'missoNet' simultaneously estimates the predictor coefficients for all tasks by leveraging information from one another, in order to provide more accurate predictions in comparison to modeling them individually. Additionally, 'missoNet' estimates the response network structure influenced by conditioning predictor variables using a L1-regularized conditional Gaussian graphical model. Unlike most penalized multi-task regression methods (e.g., MRCE), 'missoNet' is capable of obtaining estimates even when the response data is corrupted by missing values. The method automatically enjoys the theoretical and computational benefits of convexity, and returns solutions that are comparable to the estimates obtained without missingness.
Maintained by Yixiao Zeng. Last updated 2 years ago.
conditional-graphical-lassomissing-datamulti-task-regressionopenblascpp
1 stars 3.70 score 2 scriptsdsalfran
ImputeRobust:Robust Multiple Imputation with Generalized Additive Models for Location Scale and Shape
Provides new imputation methods for the 'mice' package based on generalized additive models for location, scale, and shape (GAMLSS) as described in de Jong, van Buuren and Spiess <doi:10.1080/03610918.2014.911894>.
Maintained by Daniel Salfran. Last updated 6 years ago.
imputationmissing-datamultiple-imputation
9 stars 3.65 score 4 scriptsindenkun
MissMech:Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random
To test whether the missing data mechanism, in a set of incompletely observed data, is one of missing completely at random (MCAR). For detailed description see Jamshidian, M. Jalal, S., and Jansen, C. (2014). "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)", Journal of Statistical Software, 56(6), 1-31. <https://www.jstatsoft.org/v56/i06/> <doi:10.18637/jss.v056.i06>.
Maintained by Mao Kobayashi. Last updated 1 years ago.
3.54 score 54 scriptsmrcieu
tmsens:Sensitivity Analysis Using the Trimmed Means Estimator
Sensitivity analysis using the trimmed means estimator.
Maintained by Audinga-Dea Hazewinkel. Last updated 7 months ago.
missing-datasensitivity-analysistrimmed-means
1 stars 2.70 score 1 scriptsbbartholdy
hitchr:A random sample generator based on The Hitchhiker's Guide to the Galaxy
Generates random samples containing races described in The Hitchhiker's Guide to the Galaxy.
Maintained by Bjørn Peare Bartholdy. Last updated 3 years ago.
hitchhikers-guidemissing-datasample-generation
1.70 score