Showing 200 of total 1207 results (show query)

trinker

textshape:Tools for Reshaping Text

Tools that can be used to reshape and restructure text data.

Maintained by Tyler Rinker. Last updated 12 months ago.

data-reshapingmanipulationsentence-boundary-detectiontext-datatext-formatingtidy

21.6 match 50 stars 9.18 score 266 scripts 34 dependents

tidymodels

rsample:General Resampling Infrastructure

Classes and functions to create and summarize different types of resampling objects (e.g. bootstrap, cross-validation).

Maintained by Hannah Frick. Last updated 5 days ago.

8.9 match 341 stars 16.72 score 5.2k scripts 79 dependents

insightsengineering

tern:Create Common TLGs Used in Clinical Trials

Table, Listings, and Graphs (TLG) library for common outputs used in clinical trials.

Maintained by Joe Zhu. Last updated 2 months ago.

clinical-trialsgraphslistingsnestoutputstables

9.8 match 79 stars 12.62 score 186 scripts 9 dependents

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

9.4 match 6 stars 13.00 score 13k scripts 8.7k dependents

ropensci

stplanr:Sustainable Transport Planning

Tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the 'Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as 'OSRM' (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the 'od' package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the 'travel flow aggregration' method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the 'OD jittering' method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

Maintained by Robin Lovelace. Last updated 7 months ago.

cyclecyclingdesire-linesorigin-destinationpeer-reviewedpubic-transportroute-networkroutesroutingspatialtransporttransport-planningtransportationwalking

7.1 match 427 stars 12.31 score 684 scripts 3 dependents

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

6.5 match 83 stars 10.26 score 368 scripts 1 dependents

jcfaria

TukeyC:Conventional Tukey Test

Perform the conventional Tukey test from formula, lm, aov, aovlist and lmer objects.

Maintained by Ivan Bezerra Allaman. Last updated 2 years ago.

13.7 match 4 stars 4.80 score 45 scripts

yihui

xfun:Supporting Functions for Packages Maintained by 'Yihui Xie'

Miscellaneous functions commonly used in other packages maintained by 'Yihui Xie'.

Maintained by Yihui Xie. Last updated 4 days ago.

3.6 match 145 stars 18.18 score 916 scripts 4.4k dependents

s-u

iotools:I/O Tools for Streaming

Basic I/O tools for streaming and data parsing.

Maintained by Simon Urbanek. Last updated 1 years ago.

8.8 match 48 stars 7.35 score 60 scripts 10 dependents

ivanalaman

ScottKnott:The ScottKnott Clustering Algorithm

Perform the balanced (Scott and Knott, 1974) and unbalanced <doi:10.1590/1984-70332017v17n1a1> Scott & Knott algorithm.

Maintained by Ivan Bezerra Allaman. Last updated 2 years ago.

13.7 match 1 stars 4.58 score 42 scripts 1 dependents

berndbischl

BBmisc:Miscellaneous Helper Functions for B. Bischl

Miscellaneous helper functions for and from B. Bischl and some other guys, mainly for package development.

Maintained by Bernd Bischl. Last updated 2 years ago.

5.8 match 20 stars 10.59 score 980 scripts 69 dependents

joshuaulrich

quantmod:Quantitative Financial Modelling Framework

Specify, build, trade, and analyse quantitative financial trading strategies.

Maintained by Joshua M. Ulrich. Last updated 15 days ago.

algorithmic-tradingchartingdata-importfinancetime-series

3.6 match 839 stars 16.17 score 8.1k scripts 343 dependents

trinker

qdapTools:Tools for the 'qdap' Package

A collection of tools associated with the 'qdap' package that may be useful outside of the context of text analysis.

Maintained by Tyler Rinker. Last updated 2 years ago.

7.0 match 16 stars 7.04 score 408 scripts 5 dependents

dpc10ster

RJafroc:Artificial Intelligence Systems and Observer Performance

Analyzing the performance of artificial intelligence (AI) systems/algorithms characterized by a 'search-and-report' strategy. Historically observer performance has dealt with measuring radiologists' performances in search tasks, e.g., searching for lesions in medical images and reporting them, but the implicit location information has been ignored. The implemented methods apply to analyzing the absolute and relative performances of AI systems, comparing AI performance to a group of human readers or optimizing the reporting threshold of an AI system. In addition to performing historical receiver operating receiver operating characteristic (ROC) analysis (localization information ignored), the software also performs free-response receiver operating characteristic (FROC) analysis, where lesion localization information is used. A book using the software has been published: Chakraborty DP: Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, Taylor-Francis LLC; 2017: <https://www.routledge.com/Observer-Performance-Methods-for-Diagnostic-Imaging-Foundations-Modeling/Chakraborty/p/book/9781482214840>. Online updates to this book, which use the software, are at <https://dpc10ster.github.io/RJafrocQuickStart/>, <https://dpc10ster.github.io/RJafrocRocBook/> and at <https://dpc10ster.github.io/RJafrocFrocBook/>. Supported data collection paradigms are the ROC, FROC and the location ROC (LROC). ROC data consists of single ratings per images, where a rating is the perceived confidence level that the image is that of a diseased patient. An ROC curve is a plot of true positive fraction vs. false positive fraction. FROC data consists of a variable number (zero or more) of mark-rating pairs per image, where a mark is the location of a reported suspicious region and the rating is the confidence level that it is a real lesion. LROC data consists of a rating and a location of the most suspicious region, for every image. Four models of observer performance, and curve-fitting software, are implemented: the binormal model (BM), the contaminated binormal model (CBM), the correlated contaminated binormal model (CORCBM), and the radiological search model (RSM). Unlike the binormal model, CBM, CORCBM and RSM predict 'proper' ROC curves that do not inappropriately cross the chance diagonal. Additionally, RSM parameters are related to search performance (not measured in conventional ROC analysis) and classification performance. Search performance refers to finding lesions, i.e., true positives, while simultaneously not finding false positive locations. Classification performance measures the ability to distinguish between true and false positive locations. Knowing these separate performances allows principled optimization of reader or AI system performance. This package supersedes Windows JAFROC (jackknife alternative FROC) software V4.2.1, <https://github.com/dpc10ster/WindowsJafroc>. Package functions are organized as follows. Data file related function names are preceded by 'Df', curve fitting functions by 'Fit', included data sets by 'dataset', plotting functions by 'Plot', significance testing functions by 'St', sample size related functions by 'Ss', data simulation functions by 'Simulate' and utility functions by 'Util'. Implemented are figures of merit (FOMs) for quantifying performance and functions for visualizing empirical or fitted operating characteristics: e.g., ROC, FROC, alternative FROC (AFROC) and weighted AFROC (wAFROC) curves. For fully crossed study designs significance testing of reader-averaged FOM differences between modalities is implemented via either Dorfman-Berbaum-Metz or the Obuchowski-Rockette methods. Also implemented is single modality analysis, which allows comparison of performance of a group of radiologists to a specified value, or comparison of AI to a group of radiologists interpreting the same cases. Crossed-modality analysis is implemented wherein there are two crossed modality factors and the aim is to determined performance in each modality factor averaged over all levels of the second factor. Sample size estimation tools are provided for ROC and FROC studies; these use estimates of the relevant variances from a pilot study to predict required numbers of readers and cases in a pivotal study to achieve the desired power. Utility and data file manipulation functions allow data to be read in any of the currently used input formats, including Excel, and the results of the analysis can be viewed in text or Excel output files. The methods are illustrated with several included datasets from the author's collaborations. This update includes improvements to the code, some as a result of user-reported bugs and new feature requests, and others discovered during ongoing testing and code simplification.

Maintained by Dev Chakraborty. Last updated 5 months ago.

ai-optimizationartificial-intelligence-algorithmscomputer-aided-diagnosisfroc-analysisroc-analysistarget-classificationtarget-localizationcpp

8.6 match 19 stars 5.69 score 65 scripts

edzer

intervals:Tools for Working with Points and Intervals

Tools for working with and comparing sets of points and intervals.

Maintained by Edzer Pebesma. Last updated 7 months ago.

cpp

5.1 match 11 stars 9.40 score 122 scripts 90 dependents

markfairbanks

tidytable:Tidy Interface to 'data.table'

A tidy interface to 'data.table', giving users the speed of 'data.table' while using tidyverse-like syntax.

Maintained by Mark Fairbanks. Last updated 2 months ago.

3.9 match 458 stars 11.41 score 732 scripts 10 dependents

loukiaspin

rnmamod:Bayesian Network Meta-Analysis with Missing Participants

A comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model (original and revised model proposed by Spineli, (2022) <doi:10.1177/0272989X211068005>), and sensitivity analysis (see Spineli et al., (2021) <doi:10.1186/s12916-021-02195-y>). Missing participant outcome data are addressed in all models of the package (see Spineli, (2019) <doi:10.1186/s12874-019-0731-y>, Spineli et al., (2019) <doi:10.1002/sim.8207>, Spineli, (2019) <doi:10.1016/j.jclinepi.2018.09.002>, and Spineli et al., (2021) <doi:10.1002/jrsm.1478>). The robustness to primary analysis results can also be investigated using a novel intuitive index (see Spineli et al., (2021) <doi:10.1177/0962280220983544>). Methods to evaluate the transitivity assumption quantitatively are provided (see Spineli, (2024) <doi:10.1186/s12874-024-02436-7>). A novel index to facilitate interpretation of local inconsistency is also available (see Spineli, (2024) <doi:0.1186/s13643-024-02680-4>) The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.

Maintained by Loukia Spineli. Last updated 10 days ago.

jagscpp

5.9 match 5 stars 6.64 score 12 scripts

topepo

caret:Classification and Regression Training

Misc functions for training and plotting classification and regression models.

Maintained by Max Kuhn. Last updated 3 months ago.

2.0 match 1.6k stars 19.24 score 61k scripts 303 dependents

skranz

stringtools:Tools for working with strings in R

Tools for working with strings in R

Maintained by Sebastian Kranz. Last updated 3 years ago.

9.8 match 2 stars 3.66 score 29 scripts 26 dependents