Showing 195 of total 195 results (show query)

sareameri

ftrCOOL:Feature Extraction from Biological Sequences

Extracts features from biological sequences. It contains most features which are presented in related work and also includes features which have never been introduced before. It extracts numerous features from nucleotide and peptide sequences. Each feature converts the input sequences to discrete numbers in order to use them as predictors in machine learning models. There are many features and information which are hidden inside a sequence. Utilizing the package, users can convert biological sequences to discrete models based on chosen properties. References: 'iLearn' 'Z. Chen et al.' (2019) <DOI:10.1093/bib/bbz041>. 'iFeature' 'Z. Chen et al.' (2018) <DOI:10.1093/bioinformatics/bty140>. <https://CRAN.R-project.org/package=rDNAse>. 'PseKRAAC' 'Y. Zuo et al.' 'PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition' (2017) <DOI:10.1093/bioinformatics/btw564>. 'iDNA6mA-PseKNC' 'P. Feng et al.' 'iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC' (2019) <DOI:10.1016/j.ygeno.2018.01.005>. 'I. Dubchak et al.' 'Prediction of protein folding class using global description of amino acid sequence' (1995) <DOI:10.1073/pnas.92.19.8700>. 'W. Chen et al.' 'Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome' (2015) <DOI:10.1038/srep13859>.

Maintained by Sare Amerifar. Last updated 3 years ago.

31.4 match 2 stars 2.26 score 1 scripts 3 dependents

junhuili1017

TmCalculator:Melting Temperature of Nucleic Acid Sequences

This tool is extended from methods in Bio.SeqUtils.MeltingTemp of python. The melting temperature of nucleic acid sequences can be calculated in three method, the Wallace rule (Thein & Wallace (1986) <doi:10.1016/S0140-6736(86)90739-7>), empirical formulas based on G and C content (Marmur J. (1962) <doi:10.1016/S0022-2836(62)80066-7>, Schildkraut C. (2010) <doi:10.1002/bip.360030207>, Wetmur J G (1991) <doi:10.3109/10409239109114069>, Untergasser,A. (2012) <doi:10.1093/nar/gks596>, von Ahsen N (2001) <doi:10.1093/clinchem/47.11.1956>) and nearest neighbor thermodynamics (Breslauer K J (1986) <doi:10.1073/pnas.83.11.3746>, Sugimoto N (1996) <doi:10.1093/nar/24.22.4501>, Allawi H (1998) <doi:10.1093/nar/26.11.2694>, SantaLucia J (2004) <doi:10.1146/annurev.biophys.32.110601.141800>, Freier S (1986) <doi:10.1073/pnas.83.24.9373>, Xia T (1998) <doi:10.1021/bi9809425>, Chen JL (2012) <doi:10.1021/bi3002709>, Bommarito S (2000) <doi:10.1093/nar/28.9.1929>, Turner D H (2010) <doi:10.1093/nar/gkp892>, Sugimoto N (1995) <doi:10.1016/S0048-9697(98)00088-6>, Allawi H T (1997) <doi:10.1021/bi962590c>, Santalucia N (2005) <doi:10.1093/nar/gki918>), and it can also be corrected with salt ions and chemical compound (SantaLucia J (1996) <doi:10.1021/bi951907q>, SantaLucia J(1998) <doi:10.1073/pnas.95.4.1460>, Owczarzy R (2004) <doi:10.1021/bi034621r>, Owczarzy R (2008) <doi:10.1021/bi702363u>).

Maintained by Junhui Li. Last updated 8 days ago.

5.3 match 4 stars 4.75 score 47 scripts 1 dependents

jlp-bioinf

RRNA:Secondary Structure Plotting for RNA

Functions for creating and manipulating RNA secondary structure plots.

Maintained by JP Bida. Last updated 11 months ago.

3.4 match 1 stars 4.33 score 47 scripts 1 dependents

stephenturner

string2dna:Encode/Decode Strings as Nucleotide Sequences

Encode strings as nucleotide sequences and decode nucleotide sequences into strings.

Maintained by Stephen Turner. Last updated 2 years ago.

3.9 match 1 stars 1.70 score

cran

GenomicSig:Computation of Genomic Signatures

Genomic signatures represent unique features within a species' DNA, enabling the differentiation of species and offering broad applications across various fields. This package provides essential tools for calculating these specific signatures, streamlining the process for researchers and offering a comprehensive and time-saving solution for genomic analysis.The amino acid contents are identified based on the work published by Sandberg et al. (2003) <doi:10.1016/s0378-1119(03)00581-x> and Xiao et al. (2015) <doi:10.1093/bioinformatics/btv042>. The Average Mutual Information Profiles (AMIP) values are calculated based on the work of Bauer et al. (2008) <doi:10.1186/1471-2105-9-48>. The Chaos Game Representation (CGR) plot visualization was done based on the work of Deschavanne et al. (1999) <doi:10.1093/oxfordjournals.molbev.a026048> and Jeffrey et al. (1990) <doi:10.1093/nar/18.8.2163>. The GC content is calculated based on the work published by Nakabachi et al. (2006) <doi:10.1126/science.1134196> and Barbu et al. (1956) <https://pubmed.ncbi.nlm.nih.gov/13363015>. The Oligonucleotide Frequency Derived Error Gradient (OFDEG) values are computed based on the work published by Saeed et al. (2009) <doi:10.1186/1471-2164-10-S3-S10>. The Relative Synonymous Codon Usage (RSCU) values are calculated based on the work published by Elek (2018) <https://urn.nsk.hr/urn:nbn:hr:217:686131>.

Maintained by Anu Sharma. Last updated 6 months ago.

4.0 match 1.00 score

ikwak2

aSPU:Adaptive Sum of Powered Score Test

R codes for the (adaptive) Sum of Powered Score ('SPU' and 'aSPU') tests, inverse variance weighted Sum of Powered score ('SPUw' and 'aSPUw') tests and gene-based and some pathway based association tests (Pathway based Sum of Powered Score tests ('SPUpath'), adaptive 'SPUpath' ('aSPUpath') test, 'GEEaSPU' test for multiple traits - single 'SNP' (single nucleotide polymorphism) association in generalized estimation equations, 'MTaSPUs' test for multiple traits - single 'SNP' association with Genome Wide Association Studies ('GWAS') summary statistics, Gene-based Association Test that uses an extended 'Simes' procedure ('GATES'), Hybrid Set-based Test ('HYST') and extended version of 'GATES' test for pathway-based association testing ('GATES-Simes'). ). The tests can be used with genetic and other data sets with covariates. The response variable is binary or quantitative. Summary; (1) Single trait-'SNP' set association with individual-level data ('aSPU', 'aSPUw', 'aSPUr'), (2) Single trait-'SNP' set association with summary statistics ('aSPUs'), (3) Single trait-pathway association with individual-level data ('aSPUpath'), (4) Single trait-pathway association with summary statistics ('aSPUsPath'), (5) Multiple traits-single 'SNP' association with individual-level data ('GEEaSPU'), (6) Multiple traits- single 'SNP' association with summary statistics ('MTaSPUs'), (7) Multiple traits-'SNP' set association with summary statistics('MTaSPUsSet'), (8) Multiple traits-pathway association with summary statistics('MTaSPUsSetPath').

Maintained by Il-Youp Kwak. Last updated 4 years ago.

0.5 match 12 stars 7.18 score 42 scripts 1 dependents

bioc

SNPhood:SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data

To date, thousands of single nucleotide polymorphisms (SNPs) have been found to be associated with complex traits and diseases. However, the vast majority of these disease-associated SNPs lie in the non-coding part of the genome, and are likely to affect regulatory elements, such as enhancers and promoters, rather than function of a protein. Thus, to understand the molecular mechanisms underlying genetic traits and diseases, it becomes increasingly important to study the effect of a SNP on nearby molecular traits such as chromatin environment or transcription factor (TF) binding. Towards this aim, we developed SNPhood, a user-friendly *Bioconductor* R package to investigate and visualize the local neighborhood of a set of SNPs of interest for NGS data such as chromatin marks or transcription factor binding sites from ChIP-Seq or RNA- Seq experiments. SNPhood comprises a set of easy-to-use functions to extract, normalize and summarize reads for a genomic region, perform various data quality checks, normalize read counts using additional input files, and to cluster and visualize the regions according to the binding pattern. The regions around each SNP can be binned in a user-defined fashion to allow for analysis of very broad patterns as well as a detailed investigation of specific binding shapes. Furthermore, SNPhood supports the integration with genotype information to investigate and visualize genotype-specific binding patterns. Finally, SNPhood can be employed for determining, investigating, and visualizing allele-specific binding patterns around the SNPs of interest.

Maintained by Christian Arnold. Last updated 5 months ago.

software

0.5 match 3.90 score 1 scripts

cran

hiphop:Parentage Assignment using Bi-Allelic Genetic Markers

Can be used for paternity and maternity assignment and outperforms conventional methods where closely related individuals occur in the pool of possible parents. The method compares the genotypes of offspring with any combination of potentials parents and scores the number of mismatches of these individuals at bi-allelic genetic markers (e.g. Single Nucleotide Polymorphisms). It elaborates on a prior exclusion method based on the Homozygous Opposite Test (HOT; Huisman 2017 <doi:10.1111/1755-0998.12665>) by introducing the additional exclusion criterion HIPHOP (Homozygous Identical Parents, Heterozygous Offspring are Precluded; Cockburn et al., in revision). Potential parents are excluded if they have more mismatches than can be expected due to genotyping error and mutation, and thereby one can identify the true genetic parents and detect situations where one (or both) of the true parents is not sampled. Package 'hiphop' can deal with (a) the case where there is contextual information about parentage of the mother (i.e. a female has been seen to be involved in reproductive tasks such as nest building), but paternity is unknown (e.g. due to promiscuity), (b) where both parents need to be assigned, because there is no contextual information on which female laid eggs and which male fertilized them (e.g. polygynandrous mating system where multiple females and males deposit young in a common nest, or organisms with external fertilisation that breed in aggregations). For details: Cockburn, A., Penalba, J.V.,Jaccoud, D.,Kilian, A., Brouwer, L., Double, M.C., Margraf, N., Osmond, H.L., van de Pol, M. and Kruuk, L.E.B. (in revision). HIPHOP: improved paternity assignment among close relatives using a simple exclusion method for bi-allelic markers. Molecular Ecology Resources, DOI to be added upon acceptance.

Maintained by Martijn van de Pol. Last updated 5 years ago.

0.5 match 1 stars 2.70 score

liqgroup

AssocTests:Genetic Association Studies

Some procedures including EIGENSTRAT (a procedure for detecting and correcting for population stratification through searching for the eigenvectors in genetic association studies), PCoC (a procedure for correcting for population stratification through calculating the principal coordinates and the clustering of the subjects), Tracy-Widom test (a procedure for detecting the significant eigenvalues of a matrix), distance regression (a procedure for detecting the association between a distance matrix and some independent variants of interest), single-marker test (a procedure for identifying the association between the genotype at a biallelic marker and a trait using the Wald test or the Fisher's exact test), MAX3 (a procedure for testing for the association between a single nucleotide polymorphism and a binary phenotype using the maximum value of the three test statistics derived for the recessive, additive, and dominant models), nonparametric trend test (a procedure for testing for the association between a genetic variant and a non-normal distributed quantitative trait based on the nonparametric risk), and nonparametric MAX3 (a procedure for testing for the association between a biallelic single nucleotide polymorphism and a quantitative trait using the maximum value of the three nonparametric trend tests derived for the recessive, additive, and dominant models), which are commonly used in genetic association studies. To cite this package in publications use: Lin Wang, Wei Zhang, and Qizhai Li. AssocTests: An R Package for Genetic Association Studies. Journal of Statistical Software. 2020; 94(5): 1-26.

Maintained by Lin Wang. Last updated 4 years ago.

0.8 match 1 stars 1.64 score 11 scripts