Showing 64 of total 64 results (show query)

bioc

SCANVIS:SCANVIS - a tool for SCoring, ANnotating and VISualizing splice junctions

SCANVIS is a set of annotation-dependent tools for analyzing splice junctions and their read support as predetermined by an alignment tool of choice (for example, STAR aligner). SCANVIS assesses each junction's relative read support (RRS) by relating to the context of local split reads aligning to annotated transcripts. SCANVIS also annotates each splice junction by indicating whether the junction is supported by annotation or not, and if not, what type of junction it is (e.g. exon skipping, alternative 5' or 3' events, Novel Exons). Unannotated junctions are also futher annotated by indicating whether it induces a frame shift or not. SCANVIS includes a visualization function to generate static sashimi-style plots depicting relative read support and number of split reads using arc thickness and arc heights, making it easy for users to spot well-supported junctions. These plots also clearly delineate unannotated junctions from annotated ones using designated color schemes, and users can also highlight splice junctions of choice. Variants and/or a read profile are also incoroporated into the plot if the user supplies variants in bed format and/or the BAM file. One further feature of the visualization function is that users can submit multiple samples of a certain disease or cohort to generate a single plot - this occurs via a "merge" function wherein junction details over multiple samples are merged to generate a single sashimi plot, which is useful when contrasting cohorots (eg. disease vs control).

Maintained by Phaedra Agius. Last updated 5 months ago.

softwareresearchfieldtranscriptomicsworkflowstepannotationvisualization

4.9 match 4.00 score 2 scripts

bioc

geneXtendeR:Optimized Functional Annotation Of ChIP-seq Data

geneXtendeR optimizes the functional annotation of ChIP-seq peaks by exploring relative differences in annotating ChIP-seq peak sets to variable-length gene bodies. In contrast to prior techniques, geneXtendeR considers peak annotations beyond just the closest gene, allowing users to see peak summary statistics for the first-closest gene, second-closest gene, ..., n-closest gene whilst ranking the output according to biologically relevant events and iteratively comparing the fidelity of peak-to-gene overlap across a user-defined range of upstream and downstream extensions on the original boundaries of each gene's coordinates. Since different ChIP-seq peak callers produce different differentially enriched peaks with a large variance in peak length distribution and total peak count, annotating peak lists with their nearest genes can often be a noisy process. As such, the goal of geneXtendeR is to robustly link differentially enriched peaks with their respective genes, thereby aiding experimental follow-up and validation in designing primers for a set of prospective gene candidates during qPCR.

Maintained by Bohdan Khomtchouk. Last updated 5 months ago.

chipseqgeneticsannotationgenomeannotationdifferentialpeakcallingcoveragepeakdetectionchiponchiphistonemodificationdataimportnaturallanguageprocessingvisualizationgosoftwarebioconductorbioinformaticscchip-seqcomputational-biologyepigeneticsfunctional-annotation

3.3 match 9 stars 3.95 score 5 scripts

bioc

NoRCE:NoRCE: Noncoding RNA Sets Cis Annotation and Enrichment

While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint to a functional association. We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast.

Maintained by Gulden Olgun. Last updated 5 months ago.

biologicalquestiondifferentialexpressiongenomeannotationgenesetenrichmentgenetargetgenomeassemblygo

1.7 match 1 stars 4.60 score 6 scripts

fmicompbio

swissknife:Handy code shared in the FMI CompBio group

A collection of useful R functions performing various tasks that might be re-usable and worth sharing.

Maintained by Michael Stadler. Last updated 2 months ago.

cpp

1.8 match 8 stars 3.76 score 12 scripts