Showing 28 of total 28 results (show query)

r-forge

tm:Text Mining Package

A framework for text mining applications within R.

Maintained by Kurt Hornik. Last updated 1 months ago.

cpp

13.00 score 14k scripts 100 dependents

hadley

pryr:Tools for Computing on the Language

Useful tools to pry back the covers of R and understand the language at a deeper level.

Maintained by Hadley Wickham. Last updated 1 years ago.

cpp

204 stars 11.93 score 1.9k scripts 57 dependents

romanzenka

RUnit:R Unit Test Framework

R functions implementing a standard Unit Testing framework, with additional code inspection and report generation tools.

Maintained by Roman Zenka. Last updated 1 years ago.

2 stars 10.49 score 1.7k scripts 58 dependents

nepem-ufsc

metan:Multi Environment Trials Analysis

Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

Maintained by Tiago Olivoto. Last updated 21 days ago.

2 stars 9.48 score 1.3k scripts 2 dependents

projectmosaic

mosaicCore:Common Utilities for Other MOSAIC-Family Packages

Common utilities used in other MOSAIC-family packages are collected here.

Maintained by Randall Pruim. Last updated 1 years ago.

1 stars 7.07 score 113 scripts 26 dependents

predictiveecology

NetLogoR:Build and Run Spatially Explicit Agent-Based Models

Build and run spatially explicit agent-based models using only the R platform. 'NetLogoR' follows the same framework as the 'NetLogo' software (Wilensky (1999) <http://ccl.northwestern.edu/netlogo/>) and is a translation in R of the structure and functions of 'NetLogo'. 'NetLogoR' provides new R classes to define model agents and functions to implement spatially explicit agent-based models in the R environment. This package allows benefiting of the fast and easy coding phase from the highly developed 'NetLogo' framework, coupled with the versatility, power and massive resources of the R software. Examples of two models from the NetLogo software repository (Ants <http://ccl.northwestern.edu/netlogo/models/Ants>) and Wolf-Sheep-Predation (<http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation>), and a third, Butterfly, from Railsback and Grimm (2012) <https://www.railsback-grimm-abm-book.com/>, all written using 'NetLogoR' are available. The 'NetLogo' code of the original version of these models is provided alongside. A programming guide inspired from the 'NetLogo' Programming Guide (<https://ccl.northwestern.edu/netlogo/docs/programming.html>) and a dictionary of 'NetLogo' primitives (<https://ccl.northwestern.edu/netlogo/docs/dictionary.html>) equivalences are also available. NOTE: To increment 'time', these functions can use a for loop or can be integrated with a discrete event simulator, such as 'SpaDES' (<https://cran.r-project.org/package=SpaDES>). The suggested package 'fastshp' can be installed with 'install.packages("fastshp", repos = ("<https://rforge.net>"), type = "source")'.

Maintained by Eliot J B McIntire. Last updated 4 months ago.

40 stars 6.96 score 19 scripts

openvolley

peranavolley:Perana Sports Volleyball Files

Basic functions for reading and working with Perana Sports volleyball scouting files.

Maintained by Ben Raymond. Last updated 10 months ago.

2.95 score 1 scripts 6 dependents

cran

hiphop:Parentage Assignment using Bi-Allelic Genetic Markers

Can be used for paternity and maternity assignment and outperforms conventional methods where closely related individuals occur in the pool of possible parents. The method compares the genotypes of offspring with any combination of potentials parents and scores the number of mismatches of these individuals at bi-allelic genetic markers (e.g. Single Nucleotide Polymorphisms). It elaborates on a prior exclusion method based on the Homozygous Opposite Test (HOT; Huisman 2017 <doi:10.1111/1755-0998.12665>) by introducing the additional exclusion criterion HIPHOP (Homozygous Identical Parents, Heterozygous Offspring are Precluded; Cockburn et al., in revision). Potential parents are excluded if they have more mismatches than can be expected due to genotyping error and mutation, and thereby one can identify the true genetic parents and detect situations where one (or both) of the true parents is not sampled. Package 'hiphop' can deal with (a) the case where there is contextual information about parentage of the mother (i.e. a female has been seen to be involved in reproductive tasks such as nest building), but paternity is unknown (e.g. due to promiscuity), (b) where both parents need to be assigned, because there is no contextual information on which female laid eggs and which male fertilized them (e.g. polygynandrous mating system where multiple females and males deposit young in a common nest, or organisms with external fertilisation that breed in aggregations). For details: Cockburn, A., Penalba, J.V.,Jaccoud, D.,Kilian, A., Brouwer, L., Double, M.C., Margraf, N., Osmond, H.L., van de Pol, M. and Kruuk, L.E.B. (in revision). HIPHOP: improved paternity assignment among close relatives using a simple exclusion method for bi-allelic markers. Molecular Ecology Resources, DOI to be added upon acceptance.

Maintained by Martijn van de Pol. Last updated 5 years ago.

1 stars 2.70 score