Showing 75 of total 75 results (show query)

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 20 days ago.

spatial-autocorrelationspatial-dependencespatial-weights

7.5 match 131 stars 16.62 score 6.0k scripts 107 dependents

prioritizr

prioritizr:Systematic Conservation Prioritization in R

Systematic conservation prioritization using mixed integer linear programming (MILP). It provides a flexible interface for building and solving conservation planning problems. Once built, conservation planning problems can be solved using a variety of commercial and open-source exact algorithm solvers. By using exact algorithm solvers, solutions can be generated that are guaranteed to be optimal (or within a pre-specified optimality gap). Furthermore, conservation problems can be constructed to optimize the spatial allocation of different management actions or zones, meaning that conservation practitioners can identify solutions that benefit multiple stakeholders. To solve large-scale or complex conservation planning problems, users should install the Gurobi optimization software (available from <https://www.gurobi.com/>) and the 'gurobi' R package (see Gurobi Installation Guide vignette for details). Users can also install the IBM CPLEX software (<https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer>) and the 'cplexAPI' R package (available at <https://github.com/cran/cplexAPI>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to generate solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). For further details, see Hanson et al. (2025) <doi:10.1111/cobi.14376>.

Maintained by Richard Schuster. Last updated 13 days ago.

biodiversityconservationconservation-planneroptimizationprioritizationsolverspatialcpp

5.4 match 124 stars 11.82 score 584 scripts 2 dependents

sjewo

cartogram:Create Cartograms with R

Construct continuous and non-contiguous area cartograms.

Maintained by Sebastian Jeworutzki. Last updated 2 months ago.

4.3 match 149 stars 8.72 score 732 scripts 3 dependents

henrikbengtsson

R.utils:Various Programming Utilities

Utility functions useful when programming and developing R packages.

Maintained by Henrik Bengtsson. Last updated 1 years ago.

1.8 match 63 stars 13.74 score 5.7k scripts 814 dependents

chavent

ClustGeo:Hierarchical Clustering with Spatial Constraints

Implements a Ward-like hierarchical clustering algorithm including soft spatial/geographical constraints.

Maintained by Marie Chavent. Last updated 3 years ago.

3.0 match 7 stars 5.85 score 67 scripts 1 dependents

r-spatial

spatialreg:Spatial Regression Analysis

A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. A recent review is provided by 'Bivand', 'Millo' and 'Piras' (2021) <doi:10.3390/math9111276>. 'spatialreg' >= 1.1-* corresponded to 'spdep' >= 1.1-1, in which the model fitting functions were deprecated and passed through to 'spatialreg', but masked those in 'spatialreg'. From versions 1.2-*, the functions have been made defunct in 'spdep'. From version 1.3-6, add Anselin-Kelejian (1997) test to `stsls` for residual spatial autocorrelation <doi:10.1177/016001769702000109>.

Maintained by Roger Bivand. Last updated 5 days ago.

bayesianimpactsmaximum-likelihoodspatial-dependencespatial-econometricsspatial-regressionopenblas

1.2 match 46 stars 12.92 score 916 scripts 24 dependents

josiahparry

sfdep:Spatial Dependence for Simple Features

An interface to 'spdep' to integrate with 'sf' objects and the 'tidyverse'.

Maintained by Dexter Locke. Last updated 6 months ago.

r-spatialspatial

1.8 match 130 stars 7.01 score 130 scripts

hz6yc3

CSeqpat:Frequent Contiguous Sequential Pattern Mining of Text

Mines contiguous sequential patterns in text.

Maintained by Anantha Janakiraman. Last updated 7 years ago.

5.2 match 1.00 score 3 scripts