Showing 144 of total 144 results (show query)

dmurdoch

plotrix:Various Plotting Functions

Lots of plots, various labeling, axis and color scaling functions. The author/maintainer died in September 2023.

Maintained by Duncan Murdoch. Last updated 1 years ago.

7.5 match 5 stars 11.31 score 9.2k scripts 361 dependents

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

9.1 match 7 stars 9.11 score 1.3k scripts 6 dependents

cran

circular:Circular Statistics

Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific.

Maintained by Eduardo García-Portugués. Last updated 7 months ago.

fortran

8.8 match 7 stars 7.76 score 1.1k scripts 40 dependents

pik-piam

mrremind:MadRat REMIND Input Data Package

The mrremind packages contains data preprocessing for the REMIND model.

Maintained by Lavinia Baumstark. Last updated 3 days ago.

10.5 match 4 stars 6.25 score 15 scripts 1 dependents

bczernecki

thunder:Computation and Visualisation of Atmospheric Convective Parameters

Allow to compute and visualise convective parameters commonly used in the operational prediction of severe convective storms. Core algorithm is based on a highly optimized 'C++' code linked into 'R' via 'Rcpp'. Highly efficient engine allows to derive thermodynamic and kinematic parameters from large numerical datasets such as reanalyses or operational Numerical Weather Prediction models in a reasonable amount of time. Package has been developed since 2017 by research meteorologists specializing in severe thunderstorms. The most relevant methods used in the package based on the following publications Stipanuk (1973) <https://apps.dtic.mil/sti/pdfs/AD0769739.pdf>, McCann et al. (1994) <doi:10.1175/1520-0434(1994)009%3C0532:WNIFFM%3E2.0.CO;2>, Bunkers et al. (2000) <doi:10.1175/1520-0434(2000)015%3C0061:PSMUAN%3E2.0.CO;2>, Corfidi et al. (2003) <doi:10.1175/1520-0434(2003)018%3C0997:CPAMPF%3E2.0.CO;2>, Showalter (1953) <doi:10.1175/1520-0477-34.6.250>, Coffer et al. (2019) <doi:10.1175/WAF-D-19-0115.1>, Gropp and Davenport (2019) <doi:10.1175/WAF-D-17-0150.1>, Czernecki et al. (2019) <doi:10.1016/j.atmosres.2019.05.010>, Taszarek et al. (2020) <doi:10.1175/JCLI-D-20-0346.1>, Sherburn and Parker (2014) <doi:10.1175/WAF-D-13-00041.1>, Romanic et al. (2022) <doi:10.1016/j.wace.2022.100474>.

Maintained by Bartosz Czernecki. Last updated 12 months ago.

capecinconvective-parametersdownload-soundinghodographrawinsondesevere-weatherthundertornadocpp

9.1 match 44 stars 6.30 score 7 scripts

vmoprojs

GeoModels:Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis

Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.

Maintained by Moreno Bevilacqua. Last updated 2 months ago.

fortranopenblasglibc

10.6 match 3 stars 4.17 score 83 scripts

dankelley

ocedata:Oceanographic Data Sets for 'oce' Package

Several Oceanographic data sets are provided for use by the 'oce' package, and for other purposes.

Maintained by Dan Kelley. Last updated 2 years ago.

7.4 match 8 stars 5.07 score 146 scripts

r-forge

cobs:Constrained B-Splines (Sparse Matrix Based)

Qualitatively Constrained (Regression) Smoothing Splines via Linear Programming and Sparse Matrices.

Maintained by Martin Maechler. Last updated 3 months ago.

3.8 match 7.44 score 134 scripts 18 dependents

wch

gcookbook:Data for "R Graphics Cookbook"

Data sets used in the book "R Graphics Cookbook" by Winston Chang, published by O'Reilly Media.

Maintained by Winston Chang. Last updated 6 years ago.

4.0 match 10 stars 6.77 score 1.3k scripts 1 dependents

ropensci

weatherOz:An API Client for Australian Weather and Climate Data Resources

Provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development ('DPIRD') of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science ('DES'). As well as the Bureau of Meteorology ('BOM') of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. 'DPIRD' weather data are accessed through public 'APIs' provided by 'DPIRD', <https://www.agric.wa.gov.au/weather-api-20>, providing access to weather station data from the 'DPIRD' weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology ('BOM') data and accessed through 'SILO' (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. 'DPIRD' data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. 'BOM' data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence ('PAL') as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.

Maintained by Rodrigo Pires. Last updated 20 days ago.

dpirdbommeteorological-dataweather-forecastaustraliaweatherweather-datameteorologywestern-australiaaustralia-bureau-of-meteorologywestern-australia-agricultureaustralia-agricultureaustralia-climateaustralia-weatherapi-clientclimatedatarainfallweather-api

2.2 match 32 stars 8.54 score 40 scripts

paulnorthrop

exdex:Estimation of the Extremal Index

Performs frequentist inference for the extremal index of a stationary time series. Two types of methodology are used. One type is based on a model that relates the distribution of block maxima to the marginal distribution of series and leads to the semiparametric maxima estimators described in Northrop (2015) <doi:10.1007/s10687-015-0221-5> and Berghaus and Bucher (2018) <doi:10.1214/17-AOS1621>. Sliding block maxima are used to increase precision of estimation. A graphical block size diagnostic is provided. The other type of methodology uses a model for the distribution of threshold inter-exceedance times (Ferro and Segers (2003) <doi:10.1111/1467-9868.00401>). Three versions of this type of approach are provided: the iterated weight least squares approach of Suveges (2007) <doi:10.1007/s10687-007-0034-2>, the K-gaps model of Suveges and Davison (2010) <doi:10.1214/09-AOAS292> and a similar approach of Holesovsky and Fusek (2020) <doi:10.1007/s10687-020-00374-3> that we refer to as D-gaps. For the K-gaps and D-gaps models this package allows missing values in the data, can accommodate independent subsets of data, such as monthly or seasonal time series from different years, and can incorporate information from right-censored inter-exceedance times. Graphical diagnostics for the threshold level and the respective tuning parameters K and D are provided.

Maintained by Paul J. Northrop. Last updated 11 months ago.

block-maximaextremal-indexextremeextreme-value-statisticsextremesinferencemaximasemiparametricsemiparametric-estimationsemiparametric-maxima-estimatorsthetathresholdvaluecpp

3.6 match 4.92 score 11 scripts 5 dependents

carm1r

fruclimadapt:Evaluation Tools for Assessing Climate Adaptation of Fruit Tree Species

Climate is a critical component limiting growing range of plant species, which also determines cultivar adaptation to a region. The evaluation of climate influence on fruit production is critical for decision-making in the design stage of orchards and vineyards and in the evaluation of the potential consequences of future climate. Bio- climatic indices and plant phenology are commonly used to describe the suitability of climate for growing quality fruit and to provide temporal and spatial information about regarding ongoing and future changes. 'fruclimadapt' streamlines the assessment of climate adaptation and the identification of potential risks for grapevines and fruit trees. Procedures in the package allow to i) downscale daily meteorological variables to hourly values (Forster et al (2016) <doi:10.5194/gmd-9-2315-2016>), ii) estimate chilling and forcing heat accumulation (Miranda et al (2019) <https://ec.europa.eu/eip/agriculture/sites/default/files/fg30_mp5_phenology_critical_temperatures.pdf>), iii) estimate plant phenology (Schwartz (2012) <doi:10.1007/978-94-007-6925-0>), iv) calculate bioclimatic indices to evaluate fruit tree and grapevine adaptation (e.g. Badr et al (2017) <doi:10.3354/cr01532>), v) estimate the incidence of weather-related disorders in fruits (e.g. Snyder and de Melo-Abreu (2005, ISBN:92-5-105328-6) and vi) estimate plant water requirements (Allen et al (1998, ISBN:92-5-104219-5)).

Maintained by Carlos Miranda. Last updated 2 years ago.

chill-modelschill-requirementclimate-adaptationclimate-analysisestimatefruitfruit-treesgrapevinehorticulturephenology

5.2 match 3 stars 3.18 score 4 scripts

p-chevallier

htsr:Hydro-Meteorology Time-Series

Functions for the management and treatment of hydrology and meteorology time-series stored in a 'Sqlite' data base.

Maintained by Pierre Chevallier. Last updated 7 months ago.

cpp

2.0 match 4.60 score 2 scripts

elipousson

filenamr:Make and Modify File Names and Metadata

Work with filenames and paths and read and write file metadata.

Maintained by Eli Pousson. Last updated 4 months ago.

file-naming

1.7 match 3 stars 4.03 score 3 scripts 6 dependents

pik-piam

mredgebuildings:Prepare data to be used by the EDGE-Buildings model

Prepare data to be used by the EDGE-Buildings model.

Maintained by Robin Hasse. Last updated 2 days ago.

1.6 match 3.72 score

mrc-ide

conan2:Conan the Librarian

Create libraries. For us, there is no spring. Just the wind that smells fresh before the storm.

Maintained by Rich FitzJohn. Last updated 17 days ago.

0.6 match 2.48 score 1 scripts 1 dependents