Showing 34 of total 34 results (show query)

huanglabumn

oncoPredict:Drug Response Modeling and Biomarker Discovery

Allows for building drug response models using screening data between bulk RNA-Seq and a drug response metric and two additional tools for biomarker discovery that have been developed by the Huang Laboratory at University of Minnesota. There are 3 main functions within this package. (1) calcPhenotype is used to build drug response models on RNA-Seq data and impute them on any other RNA-Seq dataset given to the model. (2) GLDS is used to calculate the general level of drug sensitivity, which can improve biomarker discovery. (3) IDWAS can take the results from calcPhenotype and link the imputed response back to available genomic (mutation and CNV alterations) to identify biomarkers. Each of these functions comes from a paper from the Huang research laboratory. Below gives the relevant paper for each function. calcPhenotype - Geeleher et al, Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. GLDS - Geeleher et al, Cancer biomarker discovery is improved by accounting for variability in general levels of drug sensitivity in pre-clinical models. IDWAS - Geeleher et al, Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies.

Maintained by Robert Gruener. Last updated 12 months ago.

svapreprocesscorestringrbiomartgenefilterorg.hs.eg.dbgenomicfeaturestxdb.hsapiens.ucsc.hg19.knowngenetcgabiolinksbiocgenericsgenomicrangesirangess4vectors

6.0 match 18 stars 6.47 score 41 scripts

bioc

systemPipeR:systemPipeR: Workflow Environment for Data Analysis and Report Generation

systemPipeR is a multipurpose data analysis workflow environment that unifies R with command-line tools. It enables scientists to analyze many types of large- or small-scale data on local or distributed computer systems with a high level of reproducibility, scalability and portability. At its core is a command-line interface (CLI) that adopts the Common Workflow Language (CWL). This design allows users to choose for each analysis step the optimal R or command-line software. It supports both end-to-end and partial execution of workflows with built-in restart functionalities. Efficient management of complex analysis tasks is accomplished by a flexible workflow control container class. Handling of large numbers of input samples and experimental designs is facilitated by consistent sample annotation mechanisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing workflows, customize them or design entirely new ones while taking advantage of widely adopted data structures within the Bioconductor ecosystem. Another important core functionality is the generation of reproducible scientific analysis and technical reports. For result interpretation, systemPipeR offers a wide range of plotting functionality, while an associated Shiny App offers many useful functionalities for interactive result exploration. The vignettes linked from this page include (1) a general introduction, (2) a description of technical details, and (3) a collection of workflow templates.

Maintained by Thomas Girke. Last updated 5 months ago.

geneticsinfrastructuredataimportsequencingrnaseqriboseqchipseqmethylseqsnpgeneexpressioncoveragegenesetenrichmentalignmentqualitycontrolimmunooncologyreportwritingworkflowstepworkflowmanagement

1.9 match 53 stars 11.56 score 344 scripts 3 dependents