Showing 21 of total 21 results (show query)
immunogenomics
harmony:Fast, Sensitive, and Accurate Integration of Single Cell Data
Implementation of the Harmony algorithm for single cell integration, described in Korsunsky et al <doi:10.1038/s41592-019-0619-0>. Package includes a standalone Harmony function and interfaces to external frameworks.
Maintained by Ilya Korsunsky. Last updated 5 months ago.
algorithmdata-integrationscrna-seqopenblascpp
554 stars 13.74 score 5.5k scripts 8 dependentsbioc
zellkonverter:Conversion Between scRNA-seq Objects
Provides methods to convert between Python AnnData objects and SingleCellExperiment objects. These are primarily intended for use by downstream Bioconductor packages that wrap Python methods for single-cell data analysis. It also includes functions to read and write H5AD files used for saving AnnData objects to disk.
Maintained by Luke Zappia. Last updated 20 days ago.
singlecelldataimportdatarepresentationbioconductorconversionscrna-seq
159 stars 11.25 score 660 scripts 4 dependentsbioc
BASiCS:Bayesian Analysis of Single-Cell Sequencing data
Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.
Maintained by Catalina Vallejos. Last updated 5 months ago.
immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp
83 stars 10.14 score 368 scripts 1 dependentsbioc
splatter:Simple Simulation of Single-cell RNA Sequencing Data
Splatter is a package for the simulation of single-cell RNA sequencing count data. It provides a simple interface for creating complex simulations that are reproducible and well-documented. Parameters can be estimated from real data and functions are provided for comparing real and simulated datasets.
Maintained by Luke Zappia. Last updated 4 months ago.
singlecellrnaseqtranscriptomicsgeneexpressionsequencingsoftwareimmunooncologybioconductorbioinformaticsscrna-seqsimulation
224 stars 9.92 score 424 scripts 1 dependentsbioc
BgeeDB:Annotation and gene expression data retrieval from Bgee database. TopAnat, an anatomical entities Enrichment Analysis tool for UBERON ontology
A package for the annotation and gene expression data download from Bgee database, and TopAnat analysis: GO-like enrichment of anatomical terms, mapped to genes by expression patterns.
Maintained by Julien Wollbrett. Last updated 5 months ago.
softwaredataimportsequencinggeneexpressionmicroarraygogenesetenrichmentbioinformaticsenrichment-analysisrna-seqscrna-seqsingle-cell
15 stars 8.46 score 19 scripts 1 dependentssamuel-marsh
scCustomize:Custom Visualizations & Functions for Streamlined Analyses of Single Cell Sequencing
Collection of functions created and/or curated to aid in the visualization and analysis of single-cell data using 'R'. 'scCustomize' aims to provide 1) Customized visualizations for aid in ease of use and to create more aesthetic and functional visuals. 2) Improve speed/reproducibility of common tasks/pieces of code in scRNA-seq analysis with a single or group of functions. For citation please use: Marsh SE (2021) "Custom Visualizations & Functions for Streamlined Analyses of Single Cell Sequencing" <doi:10.5281/zenodo.5706430> RRID:SCR_024675.
Maintained by Samuel Marsh. Last updated 3 months ago.
customizationggplot2scrna-seqseuratsingle-cellsingle-cell-genomicssingle-cell-rna-seqvisualization
246 stars 8.45 score 1.1k scriptskharchenkolab
pagoda2:Single Cell Analysis and Differential Expression
Analyzing and interactively exploring large-scale single-cell RNA-seq datasets. 'pagoda2' primarily performs normalization and differential gene expression analysis, with an interactive application for exploring single-cell RNA-seq datasets. It performs basic tasks such as cell size normalization, gene variance normalization, and can be used to identify subpopulations and run differential expression within individual samples. 'pagoda2' was written to rapidly process modern large-scale scRNAseq datasets of approximately 1e6 cells. The companion web application allows users to explore which gene expression patterns form the different subpopulations within your data. The package also serves as the primary method for preprocessing data for conos, <https://github.com/kharchenkolab/conos>. This package interacts with data available through the 'p2data' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/pagoda2>. The size of the 'p2data' package is approximately 6 MB.
Maintained by Evan Biederstedt. Last updated 1 years ago.
scrna-seqsingle-cellsingle-cell-rna-seqtranscriptomicsopenblascppopenmp
223 stars 8.00 score 282 scriptskharchenkolab
conos:Clustering on Network of Samples
Wires together large collections of single-cell RNA-seq datasets, which allows for both the identification of recurrent cell clusters and the propagation of information between datasets in multi-sample or atlas-scale collections. 'Conos' focuses on the uniform mapping of homologous cell types across heterogeneous sample collections. For instance, users could investigate a collection of dozens of peripheral blood samples from cancer patients combined with dozens of controls, which perhaps includes samples of a related tissue such as lymph nodes. This package interacts with data available through the 'conosPanel' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/conos>. The size of the 'conosPanel' package is approximately 12 MB.
Maintained by Evan Biederstedt. Last updated 1 years ago.
batch-correctionscrna-seqsingle-cell-rna-seqopenblascppopenmp
205 stars 7.33 score 258 scriptsbioc
cardelino:Clone Identification from Single Cell Data
Methods to infer clonal tree configuration for a population of cells using single-cell RNA-seq data (scRNA-seq), and possibly other data modalities. Methods are also provided to assign cells to inferred clones and explore differences in gene expression between clones. These methods can flexibly integrate information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. A flexible beta-binomial error model that accounts for stochastic dropout events as well as systematic allelic imbalance is used.
Maintained by Davis McCarthy. Last updated 5 months ago.
singlecellrnaseqvisualizationtranscriptomicsgeneexpressionsequencingsoftwareexomeseqclonal-clusteringgibbs-samplingscrna-seqsingle-cellsomatic-mutations
61 stars 7.05 score 62 scriptsqile0317
APackOfTheClones:Visualization of Clonal Expansion for Single Cell Immune Profiles
Visualize clonal expansion via circle-packing. 'APackOfTheClones' extends 'scRepertoire' to produce a publication-ready visualization of clonal expansion at a single cell resolution, by representing expanded clones as differently sized circles. The method was originally implemented by Murray Christian and Ben Murrell in the following immunology study: Ma et al. (2021) <doi:10.1126/sciimmunol.abg6356>.
Maintained by Qile Yang. Last updated 4 months ago.
clonal-analysisimmune-repertoireimmune-systemscrna-seqscrnaseqseuratsingle-cellsingle-cell-genomicscpp
15 stars 6.45 score 15 scriptsbioc
scruff:Single Cell RNA-Seq UMI Filtering Facilitator (scruff)
A pipeline which processes single cell RNA-seq (scRNA-seq) reads from CEL-seq and CEL-seq2 protocols. Demultiplex scRNA-seq FASTQ files, align reads to reference genome using Rsubread, and generate UMI filtered count matrix. Also provide visualizations of read alignments and pre- and post-alignment QC metrics.
Maintained by Zhe Wang. Last updated 5 months ago.
softwaretechnologysequencingalignmentrnaseqsinglecellworkflowsteppreprocessingqualitycontrolvisualizationimmunooncologybioinformaticsscrna-seqsingle-cellumi
8 stars 6.20 score 22 scriptsbioc
MuData:Serialization for MultiAssayExperiment Objects
Save MultiAssayExperiments to h5mu files supported by muon and mudata. Muon is a Python framework for multimodal omics data analysis. It uses an HDF5-based format for data storage.
Maintained by Ilia Kats. Last updated 1 months ago.
dataimportanndatabioconductormudatamulti-omicsmultimodal-omicsscrna-seq
5 stars 5.89 score 26 scriptsbioc
scBubbletree:Quantitative visual exploration of scRNA-seq data
scBubbletree is a quantitative method for the visual exploration of scRNA-seq data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree is user-friendly and integrates seamlessly with popular scRNA-seq analysis tools, facilitating comprehensive and intuitive data interpretation.
Maintained by Simo Kitanovski. Last updated 5 months ago.
visualizationclusteringsinglecelltranscriptomicsrnaseqbig-databigdatascrna-seqscrna-seq-analysisvisualvisual-exploration
6 stars 5.82 score 8 scriptsrezakj
iCellR:Analyzing High-Throughput Single Cell Sequencing Data
A toolkit that allows scientists to work with data from single cell sequencing technologies such as scRNA-seq, scVDJ-seq, scATAC-seq, CITE-Seq and Spatial Transcriptomics (ST). Single (i) Cell R package ('iCellR') provides unprecedented flexibility at every step of the analysis pipeline, including normalization, clustering, dimensionality reduction, imputation, visualization, and so on. Users can design both unsupervised and supervised models to best suit their research. In addition, the toolkit provides 2D and 3D interactive visualizations, differential expression analysis, filters based on cells, genes and clusters, data merging, normalizing for dropouts, data imputation methods, correcting for batch differences, pathway analysis, tools to find marker genes for clusters and conditions, predict cell types and pseudotime analysis. See Khodadadi-Jamayran, et al (2020) <doi:10.1101/2020.05.05.078550> and Khodadadi-Jamayran, et al (2020) <doi:10.1101/2020.03.31.019109> for more details.
Maintained by Alireza Khodadadi-Jamayran. Last updated 9 months ago.
10xgenomics3dbatch-normalizationcell-type-classificationcite-seqclusteringclustering-algorithmdiffusion-mapsdropouticellrimputationintractive-graphnormalizationpseudotimescrna-seqscvdj-seqsingel-cell-sequencingumapcpp
121 stars 5.56 score 7 scripts 1 dependentsbioc
BgeeCall:Automatic RNA-Seq present/absent gene expression calls generation
BgeeCall allows to generate present/absent gene expression calls without using an arbitrary cutoff like TPM<1. Calls are generated based on reference intergenic sequences. These sequences are generated based on expression of all RNA-Seq libraries of each species integrated in Bgee (https://bgee.org).
Maintained by Julien Wollbrett. Last updated 5 months ago.
softwaregeneexpressionrnaseqbiologygene-expressiongene-levelintergenic-regionspresent-absent-callsrna-seqrna-seq-librariesscrna-seq
3 stars 5.56 score 9 scriptsigordot
clustermole:Unbiased Single-Cell Transcriptomic Data Cell Type Identification
Assignment of cell type labels to single-cell RNA sequencing (scRNA-seq) clusters is often a time-consuming process that involves manual inspection of the cluster marker genes complemented with a detailed literature search. This is especially challenging when unexpected or poorly described populations are present. The clustermole R package provides methods to query thousands of human and mouse cell identity markers sourced from a variety of databases.
Maintained by Igor Dolgalev. Last updated 1 years ago.
cell-typecell-type-annotationcell-type-classificationcell-type-identificationcell-type-matchinggene-expression-signaturesscrna-seqsingle-cell
13 stars 5.37 score 36 scriptsbioc
NewWave:Negative binomial model for scRNA-seq
A model designed for dimensionality reduction and batch effect removal for scRNA-seq data. It is designed to be massively parallelizable using shared objects that prevent memory duplication, and it can be used with different mini-batch approaches in order to reduce time consumption. It assumes a negative binomial distribution for the data with a dispersion parameter that can be both commonwise across gene both genewise.
Maintained by Federico Agostinis. Last updated 5 months ago.
softwaregeneexpressiontranscriptomicssinglecellbatcheffectsequencingcoverageregressionbatch-effectsdimensionality-reductionnegative-binomialscrna-seq
4 stars 5.33 score 27 scriptsjiang-junyao
CACIMAR:cross-species analysis of cell identities, markers and regulations
A toolkit to perform cross-species analysis based on scRNA-seq data. CACIMAR contains 5 main features. (1) identify Markers in each cluster. (2) Cell type annotaion (3) identify conserved markers. (4) identify conserved cell types. (5) identify conserved modules of regulatory networks.
Maintained by Junyao Jiang. Last updated 4 months ago.
cross-species-analysisscrna-seq
12 stars 5.26 score 6 scriptsbioc
TREG:Tools for finding Total RNA Expression Genes in single nucleus RNA-seq data
RNA abundance and cell size parameters could improve RNA-seq deconvolution algorithms to more accurately estimate cell type proportions given the different cell type transcription activity levels. A Total RNA Expression Gene (TREG) can facilitate estimating total RNA content using single molecule fluorescent in situ hybridization (smFISH). We developed a data-driven approach using a measure of expression invariance to find candidate TREGs in postmortem human brain single nucleus RNA-seq. This R package implements the method for identifying candidate TREGs from snRNA-seq data.
Maintained by Louise Huuki-Myers. Last updated 4 months ago.
softwaresinglecellrnaseqgeneexpressiontranscriptomicstranscriptionsequencingbioconductordeconvolutionrnascopescrna-seqsmfishsnrna-seqtreg
4 stars 5.20 score 5 scriptsocbe-uio
DIscBIO:A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics
An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.
Maintained by Waldir Leoncio. Last updated 1 years ago.
biomarker-discoveryjupyter-notebookscrna-seqsingle-cell-analysistranscriptomicsopenjdk
12 stars 4.38 score 5 scriptsvivianstats
scINSIGHT:Interpretation of Heterogeneous Single-Cell Gene Expression Data
We develop a novel matrix factorization tool named 'scINSIGHT' to jointly analyze multiple single-cell gene expression samples from biologically heterogeneous sources, such as different disease phases, treatment groups, or developmental stages. Given multiple gene expression samples from different biological conditions, 'scINSIGHT' simultaneously identifies common and condition-specific gene modules and quantify their expression levels in each sample in a lower-dimensional space. With the factorized results, the inferred expression levels and memberships of common gene modules can be used to cluster cells and detect cell identities, and the condition-specific gene modules can help compare functional differences in transcriptomes from distinct conditions. Please also see Qian K, Fu SW, Li HW, Li WV (2022) <doi:10.1186/s13059-022-02649-3>.
Maintained by Kun Qian. Last updated 3 years ago.
bioinformaticsgene-expressionintegrationscrna-seqopenblascpp
21 stars 4.02 score 10 scripts