Showing 100 of total 100 results (show query)

lcbc-uio

questionnaires:Package with functions to calculate components and sums for LCBC questionnaires

Creates summaries and factorials of answers to questionnaires.

Maintained by Athanasia Mo Mowinckel. Last updated 2 years ago.

71.6 match 3 stars 4.63 score 13 scripts

myaseen208

PakPMICS2018hh:Multiple Indicator Cluster Survey (MICS) 2017-18 Household Questionnaire Data for Punjab, Pakistan

Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).

Maintained by Muhammad Yaseen. Last updated 6 years ago.

13.4 match 4.00 score

cran

FuzzySTs:Fuzzy Statistical Tools

The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled "The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi: 10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2_1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) <ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.

Maintained by Redina Berkachy. Last updated 8 months ago.

15.3 match 3.40 score

mskcc-epi-bio

PROscorerTools:Tools to Score Patient-Reported Outcome (PRO) and Other Psychometric Measures

Provides a reliable and flexible toolbox to score patient-reported outcome (PRO), Quality of Life (QOL), and other psychometric measures. The guiding philosophy is that scoring errors can be eliminated by using a limited number of well-tested, well-behaved functions to score PRO-like measures. The workhorse of the package is the 'scoreScale' function, which can be used to score most single-scale measures. It can reverse code items that need to be reversed before scoring and pro-rate scores for missing item data. Currently, three different types of scores can be output: summed item scores, mean item scores, and scores scaled to range from 0 to 100. The 'PROscorerTools' functions can be used to write new functions that score more complex measures. In fact, 'PROscorerTools' functions are the building blocks of the scoring functions in the 'PROscorer' package (which is a repository of functions that score specific commonly-used instruments). Users are encouraged to use 'PROscorerTools' to write scoring functions for their favorite PRO-like instruments, and to submit these functions for inclusion in 'PROscorer' (a tutorial vignette will be added soon). The long-term vision for the 'PROscorerTools' and 'PROscorer' packages is to provide an easy-to-use system to facilitate the incorporation of PRO measures into research studies in a scientifically rigorous and reproducible manner. These packages and their vignettes are intended to help establish and promote "best practices" for scoring and describing PRO-like measures in research.

Maintained by Ray Baser. Last updated 1 years ago.

clinical-trialsprospsychometricsqolquality-of-lifequestionnairesurvey

10.0 match 2 stars 4.73 score 18 scripts 1 dependents

myaseen208

PakPMICS2018mn:Multiple Indicator Cluster Survey (MICS) 2017-18 Men Questionnaire Data for Punjab, Pakistan

Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Men questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).

Maintained by Muhammad Yaseen. Last updated 6 years ago.

10.2 match 3.70 score

myaseen208

PakPMICS2018mm:Multiple Indicator Cluster Survey (MICS) 2017-18 Maternal Mortality Questionnaire Data for Punjab, Pakistan

Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Maternal Mortality questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).

Maintained by Muhammad Yaseen. Last updated 6 years ago.

10.1 match 3.70 score

myaseen208

PakPMICS2018bh:Multiple Indicator Cluster Survey (MICS) 2017-18 Birth History of Children Questionnaire Data for Punjab, Pakistan

Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household.

Maintained by Muhammad Yaseen. Last updated 6 years ago.

10.1 match 3.70 score

myaseen208

PakPMICS2018fs:Multiple Indicator Cluster Survey (MICS) 2017-18 Children Age 5-17 Questionnaire Data for Punjab, Pakistan

Provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Children Age 5-17 questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household.

Maintained by Muhammad Yaseen. Last updated 6 years ago.

9.9 match 3.70 score

augustobrusaca

KHQ:Methods for Calculating 'KHQ' Scores and 'KHQ5D' Utility Index Scores

The King's Health Questionnaire (KHQ) is a disease-specific, self-administered questionnaire designed specific to assess the impact of Urinary Incontinence (UI) on Quality of Life. The questionnaire was developed by Kelleher and collaborators (1997) <doi:10.1111/j.1471-0528.1997.tb11006.x>. It is a simple, acceptable and reliable measure to use in the clinical setting and a research tool that is useful in evaluating UI treatment outcomes. The KHQ five dimensions (KHQ5D) is a condition-specific preference-based measure developed by Brazier and collaborators (2008) <doi:10.1177/0272989X07301820>. Although not as popular as the SF6D <doi:10.1016/S0895-4356(98)00103-6> and EQ-5D <https://euroqol.org/>, the KHQ5D measures health-related quality of life (HRQoL) specifically for UI, not general conditions like the others two instruments mentioned. The KHQ5D ca be used in the clinical and economic evaluation of health care. The subject self-rates their health in terms of five dimensions: Role Limitation (RL), Physical Limitations (PL), Social Limitations (SL), Emotions (E), and Sleep (S). Frequently the states on these five dimensions are converted to a single utility index using country specific value sets, which can be used in the clinical and economic evaluation of health care as well as in population health surveys. This package provides methods to calculate scores for each dimension of the KHQ; converts KHQ item scores to KHQ5D scores; and also calculates the utility index of the KHQ5D.

Maintained by Luiz Augusto Brusaca. Last updated 4 years ago.

2.1 match 3.70 score 4 scripts

cran

cluster.datasets:Cluster Analysis Data Sets

A collection of data sets for teaching cluster analysis.

Maintained by Frederick Novomestky. Last updated 11 years ago.

3.8 match 2.00 score