Showing 53 of total 53 results (show query)

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

3.3 match 7 stars 9.11 score 1.3k scripts 6 dependents

thothorn

TH.data:TH's Data Archive

Contains data sets used in other packages Torsten Hothorn maintains.

Maintained by Torsten Hothorn. Last updated 2 months ago.

3.6 match 8.28 score 137 scripts 370 dependents

cran

frailtypack:Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints

The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. 15) functions to compute power and sample size for four Gamma-frailty-based designs: Shared Frailty Models, Nested Frailty Models, Joint Frailty Models, and General Joint Frailty Models. Each design includes two primary functions: a power function, which computes power given a specified sample size; and a sample size function, which computes the required sample size to achieve a specified power. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.

Maintained by Virginie Rondeau. Last updated 11 days ago.

fortranopenmp

4.9 match 7 stars 5.56 score 1 dependents

bioc

PDATK:Pancreatic Ductal Adenocarcinoma Tool-Kit

Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.

Maintained by Benjamin Haibe-Kains. Last updated 5 months ago.

geneexpressionpharmacogeneticspharmacogenomicssoftwareclassificationsurvivalclusteringgeneprediction

1.0 match 1 stars 4.31 score 17 scripts

syedhaider5

SIMMS:Subnetwork Integration for Multi-Modal Signatures

Algorithms to create prognostic biomarkers using biological genesets or networks.

Maintained by Syed Haider. Last updated 3 years ago.

0.6 match 2.30 score 20 scripts