Showing 120 of total 120 results (show query)

cran

gss:General Smoothing Splines

A comprehensive package for structural multivariate function estimation using smoothing splines.

Maintained by Chong Gu. Last updated 5 months ago.

fortranopenblas

12.5 match 3 stars 6.40 score 137 dependents

guido-s

netmeta:Network Meta-Analysis using Frequentist Methods

A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis": - frequentist network meta-analysis following Rücker (2012) <doi:10.1002/jrsm.1058>; - additive network meta-analysis for combinations of treatments (Rücker et al., 2020) <doi:10.1002/bimj.201800167>; - network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>, or penalised logistic regression (Evrenoglou et al., 2022) <doi:10.1002/sim.9562>; - rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>; - ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rücker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>; - split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>; - league table with network meta-analysis results; - 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>; - net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>; - measures characterizing the flow of evidence between two treatments by König et al. (2013) <doi:10.1002/sim.6001>; - automated drawing of network graphs described in Rücker & Schwarzer (2016) <doi:10.1002/jrsm.1143>; - partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rücker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>; - contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>; - subgroup network meta-analysis.

Maintained by Guido Schwarzer. Last updated 2 days ago.

meta-analysisnetwork-meta-analysisrstudio

3.8 match 33 stars 11.82 score 199 scripts 10 dependents

andyliaw-mrk

locfit:Local Regression, Likelihood and Density Estimation

Local regression, likelihood and density estimation methods as described in the 1999 book by Loader.

Maintained by Andy Liaw. Last updated 12 days ago.

4.0 match 1 stars 9.40 score 428 scripts 606 dependents

riazakhan94

ROCit:Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

Maintained by Md Riaz Ahmed Khan. Last updated 3 years ago.

4.5 match 7.66 score 332 scripts 6 dependents

loukiaspin

rnmamod:Bayesian Network Meta-Analysis with Missing Participants

A comprehensive suite of functions to perform and visualise pairwise and network meta-analysis with aggregate binary or continuous missing participant outcome data. The package covers core Bayesian one-stage models implemented in a systematic review with multiple interventions, including fixed-effect and random-effects network meta-analysis, meta-regression, evaluation of the consistency assumption via the node-splitting approach and the unrelated mean effects model (original and revised model proposed by Spineli, (2022) <doi:10.1177/0272989X211068005>), and sensitivity analysis (see Spineli et al., (2021) <doi:10.1186/s12916-021-02195-y>). Missing participant outcome data are addressed in all models of the package (see Spineli, (2019) <doi:10.1186/s12874-019-0731-y>, Spineli et al., (2019) <doi:10.1002/sim.8207>, Spineli, (2019) <doi:10.1016/j.jclinepi.2018.09.002>, and Spineli et al., (2021) <doi:10.1002/jrsm.1478>). The robustness to primary analysis results can also be investigated using a novel intuitive index (see Spineli et al., (2021) <doi:10.1177/0962280220983544>). Methods to evaluate the transitivity assumption quantitatively are provided (see Spineli, (2024) <doi:10.1186/s12874-024-02436-7>). A novel index to facilitate interpretation of local inconsistency is also available (see Spineli, (2024) <doi:0.1186/s13643-024-02680-4>) The package also offers a rich, user-friendly visualisation toolkit that aids in appraising and interpreting the results thoroughly and preparing the manuscript for journal submission. The visualisation tools comprise the network plot, forest plots, panel of diagnostic plots, heatmaps on the extent of missing participant outcome data in the network, league heatmaps on estimation and prediction, rankograms, Bland-Altman plot, leverage plot, deviance scatterplot, heatmap of robustness, barplot of Kullback-Leibler divergence, heatmap of comparison dissimilarities and dendrogram of comparison clustering. The package also allows the user to export the results to an Excel file at the working directory.

Maintained by Loukia Spineli. Last updated 10 days ago.

jagscpp

3.5 match 5 stars 6.64 score 12 scripts

eddelbuettel

rfoaas:R Interface to 'FOAAS'

R access to the 'FOAAS' (F... Off As A Service) web service is provided.

Maintained by Dirk Eddelbuettel. Last updated 5 months ago.

3.0 match 28 stars 5.23 score 6 scripts

great-northern-diver

loon.data:Data Used to Illustrate 'Loon' Functionality

Data used as examples in the 'loon' package.

Maintained by R. Wayne Oldford. Last updated 4 years ago.

loon

3.8 match 1 stars 3.32 score 14 scripts 1 dependents

homerhanumat

tigerData:GC Statistics Datasets

A small, informal collection of datasets useful in undergraduate statistics courses.

Maintained by Homer White. Last updated 1 months ago.

4.5 match 2.18 score 6 scripts

nie-xiuquan

EasyDescribe:A Convenient Way of Descriptive Statistics

Descriptive Statistics is essential for publishing articles. This package can perform descriptive statistics according to different data types. If the data is a continuous variable, the mean and standard deviation or median and quartiles are automatically output; if the data is a categorical variable, the number and percentage are automatically output. In addition, if you enter two variables in this package, the two variables will be described and their relationships will be tested automatically according to their data types. For example, if one of the two input variables is a categorical variable, another variable will be described hierarchically based on the categorical variable and the statistical differences between different groups will be compared using appropriate statistical methods. And for groups of more than two, the post hoc test will be applied. For more information on the methods we used, please see the following references: Libiseller, C. and Grimvall, A. (2002) <doi:10.1002/env.507>, Patefield, W. M. (1981) <doi:10.2307/2346669>, Hope, A. C. A. (1968) <doi:10.1111/J.2517-6161.1968.TB00759.X>, Mehta, C. R. and Patel, N. R. (1983) <doi:10.1080/01621459.1983.10477989>, Mehta, C. R. and Patel, N. R. (1986) <doi:10.1145/6497.214326>, Clarkson, D. B., Fan, Y. and Joe, H. (1993) <doi:10.1145/168173.168412>, Cochran, W. G. (1954) <doi:10.2307/3001616>, Armitage, P. (1955) <doi:10.2307/3001775>, Szabo, A. (2016) <doi:10.1080/00031305.2017.1407823>, David, F. B. (1972) <doi:10.1080/01621459.1972.10481279>, Joanes, D. N. and Gill, C. A. (1998) <doi:10.1111/1467-9884.00122>, Dunn, O. J. (1964) <doi:10.1080/00401706.1964.10490181>, Copenhaver, M. D. and Holland, B. S. (1988) <doi:10.1080/00949658808811082>, Chambers, J. M., Freeny, A. and Heiberger, R. M. (1992) <doi:10.1201/9780203738535-5>, Shaffer, J. P. (1995) <doi:10.1146/annurev.ps.46.020195.003021>, Myles, H. and Douglas, A. W. (1973) <doi:10.2307/2063815>, Rahman, M. and Tiwari, R. (2012) <doi:10.4236/health.2012.410139>, Thode, H. J. (2002) <doi:10.1201/9780203910894>, Jonckheere, A. R. (1954) <doi:10.2307/2333011>, Terpstra, T. J. (1952) <doi:10.1016/S1385-7258(52)50043-X>.

Maintained by Xiuquan Nie. Last updated 2 years ago.

3.8 match 1 stars 2.48 score

zhanyq

nlrr:Non-Linear Relative Risk Estimation and Plotting

Estimate the non-linear odds ratio and plot it against a continuous exposure.

Maintained by Yiqiang Zhan. Last updated 9 years ago.

4.5 match 1.70 score 2 scripts

nseg4

durhamSLR:The durhamSLR package

Data for Statistical Learning modules at Durham University.

Maintained by Sarah.Heaps. Last updated 2 years ago.

4.0 match 1.70 score

heming0425

mcb:Model Confidence Bounds

When choosing proper variable selection methods, it is important to consider the uncertainty of a certain method. The model confidence bound for variable selection identifies two nested models (upper and lower confidence bound models) containing the true model at a given confidence level. A good variable selection method is the one of which the model confidence bound under a certain confidence level has the shortest width. When visualizing the variability of model selection and comparing different model selection procedures, model uncertainty curve is a good graphical tool. A good variable selection method is the one of whose model uncertainty curve will tend to arch towards the upper left corner. This function aims to obtain the model confidence bound and draw the model uncertainty curve of certain single model selection method under a coverage rate equal or little higher than user-given confidential level. About what model confidence bound is and how it work please see Li,Y., Luo,Y., Ferrari,D., Hu,X. and Qin,Y. (2019) Model Confidence Bounds for Variable Selection. Biometrics, 75:392-403. <DOI:10.1111/biom.13024>. Besides, 'flare' is needed only you apply the SQRT or LAD method ('mcb' totally has 8 methods). Although 'flare' has been archived by CRAN, you can still get it in <https://CRAN.R-project.org/package=flare> and the latest version is useful for 'mcb'.

Maintained by Heming Deng. Last updated 5 years ago.

6.0 match 1.00 score 4 scripts

linlf

altmeta:Alternative Meta-Analysis Methods

Provides alternative statistical methods for meta-analysis, including: - bivariate generalized linear mixed models for synthesizing odds ratios, relative risks, and risk differences (Chu et al., 2012 <doi:10.1177/0962280210393712>) - heterogeneity tests and measures and penalization methods that are robust to outliers (Lin et al., 2017 <doi:10.1111/biom.12543>; Wang et al., 2022 <doi:10.1002/sim.9261>); - measures, tests, and visualization tools for publication bias or small-study effects (Lin and Chu, 2018 <doi:10.1111/biom.12817>; Lin, 2019 <doi:10.1002/jrsm.1340>; Lin, 2020 <doi:10.1177/0962280220910172>; Shi et al., 2020 <doi:10.1002/jrsm.1415>); - meta-analysis of combining standardized mean differences and odds ratios (Jing et al., 2023 <doi:10.1080/10543406.2022.2105345>); - meta-analysis of diagnostic tests for synthesizing sensitivities, specificities, etc. (Reitsma et al., 2005 <doi:10.1016/j.jclinepi.2005.02.022>; Chu and Cole, 2006 <doi:10.1016/j.jclinepi.2006.06.011>); - meta-analysis methods for synthesizing proportions (Lin and Chu, 2020 <doi:10.1097/ede.0000000000001232>); - models for multivariate meta-analysis, measures of inconsistency degrees of freedom in Bayesian network meta-analysis, and predictive P-score (Lin and Chu, 2018 <doi:10.1002/jrsm.1293>; Lin, 2020 <doi:10.1080/10543406.2020.1852247>; Rosenberger et al., 2021 <doi:10.1186/s12874-021-01397-5>).

Maintained by Lifeng Lin. Last updated 6 months ago.

jagscpp

5.6 match 1.04 score 11 scripts

scontador

gluvarpro:Glucose Variability Measures from Continuous Glucose Monitoring Data

Calculate different glucose variability measures, including average measures of glycemia, measures of glycemic variability and measures of glycemic risk, from continuous glucose monitoring data. Boris P. Kovatchev, Erik Otto, Daniel Cox, Linda Gonder-Frederick, and William Clarke (2006) <doi:10.2337/dc06-1085>. Jean-Pierre Le Floch, Philippe Escuyer, Eric Baudin, Dominique Baudon, and Leon Perlemuter (1990) <doi:10.2337/diacare.13.2.172>. C.M. McDonnell, S.M. Donath, S.I. Vidmar, G.A. Werther, and F.J. Cameron (2005) <doi:10.1089/dia.2005.7.253>. Everitt, Brian (1998) <doi:10.1111/j.1751-5823.2011.00149_2.x>. Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) <doi:10.2307/2234167>. Dougherty, R. L., Edelman, A. and Hyman, J. M. (1989) <doi:10.1090/S0025-5718-1989-0962209-1>. Tukey, J. W. (1977) <doi:10.1016/0377-2217(86)90209-2>. F. John Service (2013) <doi:10.2337/db12-1396>. Edmond A. Ryan, Tami Shandro, Kristy Green, Breay W. Paty, Peter A. Senior, David Bigam, A.M. James Shapiro, and Marie-Christine Vantyghem (2004) <doi:10.2337/diabetes.53.4.955>. F. John Service, George D. Molnar, John W. Rosevear, Eugene Ackerman, Leal C. Gatewood, William F. Taylor (1970) <doi:10.2337/diab.19.9.644>. Sarah E. Siegelaar, Frits Holleman, Joost B. L. Hoekstra, and J. Hans DeVries (2010) <doi:10.1210/er.2009-0021>. Gabor Marics, Zsofia Lendvai, Csaba Lodi, Levente Koncz, David Zakarias, Gyorgy Schuster, Borbala Mikos, Csaba Hermann, Attila J. Szabo, and Peter Toth-Heyn (2015) <doi:10.1186/s12938-015-0035-3>. Thomas Danne, Revital Nimri, Tadej Battelino, Richard M. Bergenstal, Kelly L. Close, J. Hans DeVries, SatishGarg, Lutz Heinemann, Irl Hirsch, Stephanie A. Amiel, Roy Beck, Emanuele Bosi, Bruce Buckingham, ClaudioCobelli, Eyal Dassau, Francis J. Doyle, Simon Heller, Roman Hovorka, Weiping Jia, Tim Jones, Olga Kordonouri,Boris Kovatchev, Aaron Kowalski, Lori Laffel, David Maahs, Helen R. Murphy, Kirsten Nørgaard, Christopher G.Parkin, Eric Renard, Banshi Saboo, Mauro Scharf, William V. Tamborlane, Stuart A. Weinzimer, and Moshe Phillip.International consensus on use of continuous glucose monitoring.Diabetes Care, 2017 <doi:10.2337/dc17-1600>.

Maintained by Sergio Contador. Last updated 2 years ago.

0.8 match 1.00 score