Showing 52 of total 52 results (show query)

usdaforestservice

gdalraster:Bindings to the 'Geospatial Data Abstraction Library' Raster API

Interface to the Raster API of the 'Geospatial Data Abstraction Library' ('GDAL', <https://gdal.org>). Bindings are implemented in an exposed C++ class encapsulating a 'GDALDataset' and its raster band objects, along with several stand-alone functions. These support manual creation of uninitialized datasets, creation from existing raster as template, read/set dataset parameters, low level I/O, color tables, raster attribute tables, virtual raster (VRT), and 'gdalwarp' wrapper for reprojection and mosaicing. Includes 'GDAL' algorithms ('dem_proc()', 'polygonize()', 'rasterize()', etc.), and functions for coordinate transformation and spatial reference systems. Calling signatures resemble the native C, C++ and Python APIs provided by the 'GDAL' project. Includes raster 'calc()' to evaluate a given R expression on a layer or stack of layers, with pixel x/y available as variables in the expression; and raster 'combine()' to identify and count unique pixel combinations across multiple input layers, with optional output of the pixel-level combination IDs. Provides raster display using base 'graphics'. Bindings to a subset of the 'OGR' API are also included for managing vector data sources. Bindings to a subset of the Virtual Systems Interface ('VSI') are also included to support operations on 'GDAL' virtual file systems. These are general utility functions that abstract file system operations on URLs, cloud storage services, 'Zip'/'GZip'/'7z'/'RAR' archives, and in-memory files. 'gdalraster' may be useful in applications that need scalable, low-level I/O, or prefer a direct 'GDAL' API.

Maintained by Chris Toney. Last updated 15 hours ago.

gdalgeospatialrastervectorcpp

5.3 match 42 stars 9.50 score 32 scripts 3 dependents

pharmar

riskmetric:Risk Metrics to Evaluating R Packages

Facilities for assessing R packages against a number of metrics to help quantify their robustness.

Maintained by Eli Miller. Last updated 9 days ago.

1.8 match 167 stars 8.89 score 43 scripts

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

2.6 match 5.40 score 24 scripts

cran

rehh.data:Data Only: Searching for Footprints of Selection using Haplotype Homozygosity Based Tests

Contains example data for the 'rehh' package.

Maintained by Mathieu Gautier. Last updated 8 years ago.

4.4 match 3.06 score 19 scripts 2 dependents

bioc

SNPhood:SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data

To date, thousands of single nucleotide polymorphisms (SNPs) have been found to be associated with complex traits and diseases. However, the vast majority of these disease-associated SNPs lie in the non-coding part of the genome, and are likely to affect regulatory elements, such as enhancers and promoters, rather than function of a protein. Thus, to understand the molecular mechanisms underlying genetic traits and diseases, it becomes increasingly important to study the effect of a SNP on nearby molecular traits such as chromatin environment or transcription factor (TF) binding. Towards this aim, we developed SNPhood, a user-friendly *Bioconductor* R package to investigate and visualize the local neighborhood of a set of SNPs of interest for NGS data such as chromatin marks or transcription factor binding sites from ChIP-Seq or RNA- Seq experiments. SNPhood comprises a set of easy-to-use functions to extract, normalize and summarize reads for a genomic region, perform various data quality checks, normalize read counts using additional input files, and to cluster and visualize the regions according to the binding pattern. The regions around each SNP can be binned in a user-defined fashion to allow for analysis of very broad patterns as well as a detailed investigation of specific binding shapes. Furthermore, SNPhood supports the integration with genotype information to investigate and visualize genotype-specific binding patterns. Finally, SNPhood can be employed for determining, investigating, and visualizing allele-specific binding patterns around the SNPs of interest.

Maintained by Christian Arnold. Last updated 5 months ago.

software

2.6 match 3.90 score 1 scripts

nialsig

doolkit:Exploration of Dental Surface Topography

Tools for exploring the topography of 3d triangle meshes. The functions were developed with dental surfaces in mind, but could be applied to any triangle mesh of class 'mesh3d'. More specifically, 'doolkit' allows to isolate the border of a mesh, or a subpart of the mesh using the polygon networks method; crop a mesh; compute basic descriptors (elevation, orientation, footprint area); compute slope, angularity and relief index (Ungar and Williamson (2000) <https://palaeo-electronica.org/2000_1/gorilla/issue1_00.htm>; Boyer (2008) <doi:10.1016/j.jhevol.2008.08.002>), inclination and occlusal relief index or gamma (Guy et al. (2013) <doi:10.1371/journal.pone.0066142>), OPC (Evans et al. (2007) <doi:10.1038/nature05433>), OPCR (Wilson et al. (2012) <doi:10.1038/nature10880>), DNE (Bunn et al. (2011) <doi:10.1002/ajpa.21489>; Pampush et al. (2016) <doi:10.1007/s10914-016-9326-0>), form factor (Horton (1932) <doi:10.1029/TR013i001p00350>), basin elongation (Schum (1956) <doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2>), lemniscate ratio (Chorley et al; (1957) <doi:10.2475/ajs.255.2.138>), enamel-dentine distance (Guy et al. (2015) <doi:10.1371/journal.pone.0138802>; Thiery et al. (2017) <doi:10.3389/fphys.2017.00524>), absolute crown strength (Schwartz et al. (2020) <doi:10.1098/rsbl.2019.0671>), relief rate (Thiery et al. (2019) <doi:10.1002/ajpa.23916>) and area-relative curvature; draw cumulative profiles of a topographic variable; and map a variable over a 3d triangle mesh.

Maintained by Ghislain Thiery. Last updated 1 years ago.

0.5 match 1 stars 2.70 score 1 scripts