Showing 3 of total 3 results (show query)
hoxo-m
densratio:Density Ratio Estimation
Density ratio estimation. The estimated density ratio function can be used in many applications such as anomaly detection, change-point detection, covariate shift adaptation. The implemented methods are uLSIF (Hido et al. (2011) <doi:10.1007/s10115-010-0283-2>), RuLSIF (Yamada et al. (2011) <doi:10.1162/NECO_a_00442>), and KLIEP (Sugiyama et al. (2007) <doi:10.1007/s10463-008-0197-x>).
Maintained by Koji Makiyama. Last updated 6 years ago.
anomalydetectionmachine-learningmachine-learning-algorithmsmachine-learning-libraryr-languagestatistics
10.0 match 21 stars 6.36 score 36 scripts 2 dependentsallen-1242
StructuralDecompose:Decomposes a Level Shifted Time Series
Explains the behavior of a time series by decomposing it into its trend, seasonality and residuals. It is built to perform very well in the presence of significant level shifts. It is designed to play well with any breakpoint algorithm and any smoothing algorithm. Currently defaults to 'lowess' for smoothing and 'strucchange' for breakpoint identification. The package is useful in areas such as trend analysis, time series decomposition, breakpoint identification and anomaly detection.
Maintained by Allen Sunny. Last updated 2 years ago.
decompositiontimeseries-analysis
3.0 match 1 stars 4.18 score 4 scriptsbusiness-science
anomalize:Tidy Anomaly Detection
The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the 'forecast' package and the Twitter 'AnomalyDetection' package. Refer to the associated functions for specific references for these methods.
Maintained by Matt Dancho. Last updated 1 years ago.
anomalyanomaly-detectiondecompositiondetect-anomaliesiqrtime-series
0.5 match 339 stars 9.56 score 332 scripts