Showing 59 of total 59 results (show query)

lleisong

itsdm:Isolation Forest-Based Presence-Only Species Distribution Modeling

Collection of R functions to do purely presence-only species distribution modeling with isolation forest (iForest) and its variations such as Extended isolation forest and SCiForest. See the details of these methods in references: Liu, F.T., Ting, K.M. and Zhou, Z.H. (2008) <doi:10.1109/ICDM.2008.17>, Hariri, S., Kind, M.C. and Brunner, R.J. (2019) <doi:10.1109/TKDE.2019.2947676>, Liu, F.T., Ting, K.M. and Zhou, Z.H. (2010) <doi:10.1007/978-3-642-15883-4_18>, Guha, S., Mishra, N., Roy, G. and Schrijvers, O. (2016) <https://proceedings.mlr.press/v48/guha16.html>, Cortes, D. (2021) <arXiv:2110.13402>. Additionally, Shapley values are used to explain model inputs and outputs. See details in references: Shapley, L.S. (1953) <doi:10.1515/9781400881970-018>, Lundberg, S.M. and Lee, S.I. (2017) <https://dl.acm.org/doi/abs/10.5555/3295222.3295230>, Molnar, C. (2020) <ISBN:978-0-244-76852-2>, Štrumbelj, E. and Kononenko, I. (2014) <doi:10.1007/s10115-013-0679-x>. itsdm also provides functions to diagnose variable response, analyze variable importance, draw spatial dependence of variables and examine variable contribution. As utilities, the package includes a few functions to download bioclimatic variables including 'WorldClim' version 2.0 (see Fick, S.E. and Hijmans, R.J. (2017) <doi:10.1002/joc.5086>) and 'CMCC-BioClimInd' (see Noce, S., Caporaso, L. and Santini, M. (2020) <doi:10.1038/s41597-020-00726-5>.

Maintained by Lei Song. Last updated 2 years ago.

isolation-forestoutlier-detectionpresence-onlymodelshapley-valuespecies-distribution-modelling

6.9 match 4 stars 5.59 score 65 scripts

covid19datahub

COVID19:COVID-19 Data Hub

Unified datasets for a better understanding of COVID-19.

Maintained by Emanuele Guidotti. Last updated 27 days ago.

2019-ncovcoronaviruscovid-19covid-datacovid19-data

2.3 match 252 stars 11.08 score 265 scripts

afrimapr

afriadmin:African Administrative Boundary Polygons

Will make administrative boundary polygons for Africa easily accessible from R.

Maintained by Andy South. Last updated 3 years ago.

5.9 match 16 stars 4.00 score 21 scripts 2 dependents

jpearson0525

micromapST:Linked Micromap Plots for U. S. and Other Geographic Areas

Provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the 'micromapST' function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package. In version 3.0.0, the 'BuildBorderGroup' function was upgraded to not use the retiring 'maptools', 'rgdal', and 'rgeos' packages. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.

Maintained by Jim Pearson. Last updated 1 months ago.

5.8 match 2.80 score 21 scripts

cran

Directional:A Collection of Functions for Directional Data Analysis

A collection of functions for directional data (including massive data, with millions of observations) analysis. Hypothesis testing, discriminant and regression analysis, MLE of distributions and more are included. The standard textbook for such data is the "Directional Statistics" by Mardia, K. V. and Jupp, P. E. (2000). Other references include: a) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2018). "An elliptically symmetric angular Gaussian distribution". Statistics and Computing 28(3): 689-697. <doi:10.1007/s11222-017-9756-4>. b) Tsagris M. and Alenazi A. (2019). "Comparison of discriminant analysis methods on the sphere". Communications in Statistics: Case Studies, Data Analysis and Applications 5(4):467--491. <doi:10.1080/23737484.2019.1684854>. c) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2020). "Spherical regression models with general covariates and anisotropic errors". Statistics and Computing 30(1): 153--165. <doi:10.1007/s11222-019-09872-2>. d) Tsagris M. and Alenazi A. (2024). "An investigation of hypothesis testing procedures for circular and spherical mean vectors". Communications in Statistics-Simulation and Computation, 53(3): 1387--1408. <doi:10.1080/03610918.2022.2045499>. e) Yu Z. and Huang X. (2024). A new parameterization for elliptically symmetric angular Gaussian distributions of arbitrary dimension. Electronic Journal of Statistics, 18(1): 301--334. <doi:10.1214/23-EJS2210>. f) Tsagris M. and Alzeley O. (2024). "Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling". Australian & New Zealand Journal of Statistics (Accepted for publication). <doi:10.1111/anzs.12434>. g) Tsagris M., Papastamoulis P. and Kato S. (2024). "Directional data analysis: spherical Cauchy or Poisson kernel-based distribution". Statistics and Computing (Accepted for publication). <doi:10.48550/arXiv.2409.03292>.

Maintained by Michail Tsagris. Last updated 1 months ago.

3.3 match 3 stars 4.06 score 3 dependents

afrimapr

africovid:Visualisation of Sub-National Covid Data for Africa

Visualisation of Sub-National Covid Data for Africa.

Maintained by Andy South. Last updated 4 years ago.

3.5 match 1.70 score

ycroissant

pder:Panel Data Econometrics with R

Data sets for the Panel Data Econometrics with R <doi:10.1002/9781119504641> book.

Maintained by Yves Croissant. Last updated 3 years ago.

3.6 match 1.36 score 15 scripts

e-sensing

sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes

An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Maintained by Gilberto Camara. Last updated 1 months ago.

big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp

0.5 match 494 stars 9.50 score 384 scripts

mrc-ide

first90:The first90 model

Implements the Shiny90 model for estimating progress towards the UNAIDS "first 90" target for HIV awareness of status in sub-Saharan Africa.

Maintained by Jeffrey Eaton. Last updated 4 months ago.

0.5 match 5 stars 4.53 score 2 scripts 3 dependents