Showing 138 of total 138 results (show query)

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

16.0 match 83 stars 10.26 score 368 scripts 1 dependents

blaserlab

blaseRdata:Supporting Data for the blaseRtools Package

What the package does (one paragraph).

Maintained by Brad Blaser. Last updated 12 months ago.

42.2 match 1.70 score 6 scripts

dsokolo

scMappR:Single Cell Mapper

The single cell mapper (scMappR) R package contains a suite of bioinformatic tools that provide experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG). The function "scMappR_and_pathway_analysis" reranks DEGs to generate cell-type specificity scores called cell-weighted fold-changes. Users input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type proportions from RNA-seq deconvolution and the ratio of cell-type proportions between the two conditions to account for changes in cell-type proportion. With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-changes to complete cell-type specific pathway analysis. The "process_dgTMatrix_lists" function in the scMappR package contains an automated scRNA-seq processing pipeline where users input scRNA-seq count data, which is made compatible for scMappR and other R packages that analyze scRNA-seq data. We further used this to store hundreds up regularly updating signature matrices. The functions "tissue_by_celltype_enrichment", "tissue_scMappR_internal", and "tissue_scMappR_custom" combine these consistently processed scRNAseq count data with gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. GWAS hits). Reference: Sokolowski,D.J., Faykoo-Martinez,M., Erdman,L., Hou,H., Chan,C., Zhu,H., Holmes,M.M., Goldenberg,A. and Wilson,M.D. (2021) Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes. NAR Genomics and Bioinformatics. 3(1). Iqab011. <doi:10.1093/nargab/lqab011>.

Maintained by Dustin Sokolowski. Last updated 2 years ago.

14.8 match 4 stars 3.30 score 9 scripts

bioc

distinct:distinct: a method for differential analyses via hierarchical permutation tests

distinct is a statistical method to perform differential testing between two or more groups of distributions; differential testing is performed via hierarchical non-parametric permutation tests on the cumulative distribution functions (cdfs) of each sample. While most methods for differential expression target differences in the mean abundance between conditions, distinct, by comparing full cdfs, identifies, both, differential patterns involving changes in the mean, as well as more subtle variations that do not involve the mean (e.g., unimodal vs. bi-modal distributions with the same mean). distinct is a general and flexible tool: due to its fully non-parametric nature, which makes no assumptions on how the data was generated, it can be applied to a variety of datasets. It is particularly suitable to perform differential state analyses on single cell data (i.e., differential analyses within sub-populations of cells), such as single cell RNA sequencing (scRNA-seq) and high-dimensional flow or mass cytometry (HDCyto) data. To use distinct one needs data from two or more groups of samples (i.e., experimental conditions), with at least 2 samples (i.e., biological replicates) per group.

Maintained by Simone Tiberi. Last updated 5 months ago.

geneticsrnaseqsequencingdifferentialexpressiongeneexpressionmultiplecomparisonsoftwaretranscriptionstatisticalmethodvisualizationsinglecellflowcytometrygenetargetopenblascpp

4.3 match 11 stars 6.35 score 34 scripts 1 dependents

igordot

scooter:Streamlined scRNA-Seq Analysis Pipeline

Streamlined scRNA-Seq analysis pipeline.

Maintained by Igor Dolgalev. Last updated 1 years ago.

7.2 match 4 stars 2.51 score 16 scripts

cran

VAM:Variance-Adjusted Mahalanobis

Contains logic for cell-specific gene set scoring of single cell RNA sequencing data.

Maintained by H. Robert Frost. Last updated 1 years ago.

3.3 match 4.78 score 4 dependents

carmonalab

scGate:Marker-Based Cell Type Purification for Single-Cell Sequencing Data

A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. 'scGate' automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. Briefly, 'scGate' takes as input: i) a gene expression matrix stored in a 'Seurat' object and ii) a “gating model” (GM), consisting of a set of marker genes that define the cell population of interest. The GM can be as simple as a single marker gene, or a combination of positive and negative markers. More complex GMs can be constructed in a hierarchical fashion, akin to gating strategies employed in flow cytometry. 'scGate' evaluates the strength of signature marker expression in each cell using the rank-based method 'UCell', and then performs k-nearest neighbor (kNN) smoothing by calculating the mean 'UCell' score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNA-seq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest. See the related publication Andreatta et al. (2022) <doi:10.1093/bioinformatics/btac141>.

Maintained by Massimo Andreatta. Last updated 1 months ago.

filteringmarker-genesscgatesignaturessingle-cell

1.0 match 106 stars 8.38 score 163 scripts

ncchung

jackstraw:Statistical Inference for Unsupervised Learning

Test for association between the observed data and their estimated latent variables. The jackstraw package provides a resampling strategy and testing scheme to estimate statistical significance of association between the observed data and their latent variables. Depending on the data type and the analysis aim, the latent variables may be estimated by principal component analysis (PCA), factor analysis (FA), K-means clustering, and related unsupervised learning algorithms. The jackstraw methods learn over-fitting characteristics inherent in this circular analysis, where the observed data are used to estimate the latent variables and used again to test against that estimated latent variables. When latent variables are estimated by PCA, the jackstraw enables statistical testing for association between observed variables and latent variables, as estimated by low-dimensional principal components (PCs). This essentially leads to identifying variables that are significantly associated with PCs. Similarly, unsupervised clustering, such as K-means clustering, partition around medoids (PAM), and others, finds coherent groups in high-dimensional data. The jackstraw estimates statistical significance of cluster membership, by testing association between data and cluster centers. Clustering membership can be improved by using the resulting jackstraw p-values and posterior inclusion probabilities (PIPs), with an application to unsupervised evaluation of cell identities in single cell RNA-seq (scRNA-seq).

Maintained by Neo Christopher Chung. Last updated 3 months ago.

clusteringk-meansmachine-learningpcastatisticsunsupervised

1.3 match 16 stars 5.29 score 35 scripts

bioc

LRcell:Differential cell type change analysis using Logistic/linear Regression

The goal of LRcell is to identify specific sub-cell types that drives the changes observed in a bulk RNA-seq differential gene expression experiment. To achieve this, LRcell utilizes sets of cell marker genes acquired from single-cell RNA-sequencing (scRNA-seq) as indicators for various cell types in the tissue of interest. Next, for each cell type, using its marker genes as indicators, we apply Logistic Regression on the complete set of genes with differential expression p-values to calculate a cell-type significance p-value. Finally, these p-values are compared to predict which one(s) are likely to be responsible for the differential gene expression pattern observed in the bulk RNA-seq experiments. LRcell is inspired by the LRpath[@sartor2009lrpath] algorithm developed by Sartor et al., originally designed for pathway/gene set enrichment analysis. LRcell contains three major components: LRcell analysis, plot generation and marker gene selection. All modules in this package are written in R. This package also provides marker genes in the Prefrontal Cortex (pFC) human brain region, human PBMC and nine mouse brain regions (Frontal Cortex, Cerebellum, Globus Pallidus, Hippocampus, Entopeduncular, Posterior Cortex, Striatum, Substantia Nigra and Thalamus).

Maintained by Wenjing Ma. Last updated 5 months ago.

singlecellgenesetenrichmentsequencingregressiongeneexpressiondifferentialexpressionenrichmentmarker-genes

1.4 match 3 stars 4.48 score 5 scripts