Showing 73 of total 73 results (show query)

insightsengineering

teal.data:Data Model for 'teal' Applications

Provides a 'teal_data' class as a unified data model for 'teal' applications focusing on reproducibility and relational data.

Maintained by Dawid Kaledkowski. Last updated 2 months ago.

data-modelnest

5.0 match 11 stars 9.93 score 44 scripts 8 dependents

globalecologylab

poems:Pattern-Oriented Ensemble Modeling System

A framework of interoperable R6 classes (Chang, 2020, <https://CRAN.R-project.org/package=R6>) for building ensembles of viable models via the pattern-oriented modeling (POM) approach (Grimm et al.,2005, <doi:10.1126/science.1116681>). The package includes classes for encapsulating and generating model parameters, and managing the POM workflow. The workflow includes: model setup; generating model parameters via Latin hyper-cube sampling (Iman & Conover, 1980, <doi:10.1080/03610928008827996>); running multiple sampled model simulations; collating summary results; and validating and selecting an ensemble of models that best match known patterns. By default, model validation and selection utilizes an approximate Bayesian computation (ABC) approach (Beaumont et al., 2002, <doi:10.1093/genetics/162.4.2025>), although alternative user-defined functionality could be employed. The package includes a spatially explicit demographic population model simulation engine, which incorporates default functionality for density dependence, correlated environmental stochasticity, stage-based transitions, and distance-based dispersal. The user may customize the simulator by defining functionality for translocations, harvesting, mortality, and other processes, as well as defining the sequence order for the simulator processes. The framework could also be adapted for use with other model simulators by utilizing its extendable (inheritable) base classes.

Maintained by July Pilowsky. Last updated 21 days ago.

biogeographypopulation-modelprocess-based

1.3 match 10 stars 8.05 score 59 scripts 2 dependents

bsvars

bsvars:Bayesian Estimation of Structural Vector Autoregressive Models

Provides fast and efficient procedures for Bayesian analysis of Structural Vector Autoregressions. This package estimates a wide range of models, including homo-, heteroskedastic, and non-normal specifications. Structural models can be identified by adjustable exclusion restrictions, time-varying volatility, or non-normality. They all include a flexible three-level equation-specific local-global hierarchical prior distribution for the estimated level of shrinkage for autoregressive and structural parameters. Additionally, the package facilitates predictive and structural analyses such as impulse responses, forecast error variance and historical decompositions, forecasting, verification of heteroskedasticity, non-normality, and hypotheses on autoregressive parameters, as well as analyses of structural shocks, volatilities, and fitted values. Beautiful plots, informative summary functions, and extensive documentation including the vignette by Woźniak (2024) <doi:10.48550/arXiv.2410.15090> complement all this. The implemented techniques align closely with those presented in Lütkepohl, Shang, Uzeda, & Woźniak (2024) <doi:10.48550/arXiv.2404.11057>, Lütkepohl & Woźniak (2020) <doi:10.1016/j.jedc.2020.103862>, and Song & Woźniak (2021) <doi:10.1093/acrefore/9780190625979.013.174>. The 'bsvars' package is aligned regarding objects, workflows, and code structure with the R package 'bsvarSIGNs' by Wang & Woźniak (2024) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset.

Maintained by Tomasz Woźniak. Last updated 1 months ago.

bayesian-inferenceeconometricsvector-autoregressionopenblascppopenmp

0.5 match 46 stars 7.67 score 32 scripts 1 dependents