Showing 44 of total 44 results (show query)

bioc

systemPipeShiny:systemPipeShiny: An Interactive Framework for Workflow Management and Visualization

systemPipeShiny (SPS) extends the widely used systemPipeR (SPR) workflow environment with a versatile graphical user interface provided by a Shiny App. This allows non-R users, such as experimentalists, to run many systemPipeRโ€™s workflow designs, control, and visualization functionalities interactively without requiring knowledge of R. Most importantly, SPS has been designed as a general purpose framework for interacting with other R packages in an intuitive manner. Like most Shiny Apps, SPS can be used on both local computers as well as centralized server-based deployments that can be accessed remotely as a public web service for using SPRโ€™s functionalities with community and/or private data. The framework can integrate many core packages from the R/Bioconductor ecosystem. Examples of SPSโ€™ current functionalities include: (a) interactive creation of experimental designs and metadata using an easy to use tabular editor or file uploader; (b) visualization of workflow topologies combined with auto-generation of R Markdown preview for interactively designed workflows; (d) access to a wide range of data processing routines; (e) and an extendable set of visualization functionalities. Complex visual results can be managed on a 'Canvas Workbenchโ€™ allowing users to organize and to compare plots in an efficient manner combined with a session snapshot feature to continue work at a later time. The present suite of pre-configured visualization examples. The modular design of SPR makes it easy to design custom functions without any knowledge of Shiny, as well as extending the environment in the future with contributions from the community.

Maintained by Le Zhang. Last updated 5 months ago.

shinyappsinfrastructuredataimportsequencingqualitycontrolreportwritingexperimentaldesignclusteringbioconductorbioconductor-packagedata-visualizationshinysystempiper

34 stars 7.04 score 36 scripts

bioc

MatrixQCvis:Shiny-based interactive data-quality exploration for omics data

Data quality assessment is an integral part of preparatory data analysis to ensure sound biological information retrieval. We present here the MatrixQCvis package, which provides shiny-based interactive visualization of data quality metrics at the per-sample and per-feature level. It is broadly applicable to quantitative omics data types that come in matrix-like format (features x samples). It enables the detection of low-quality samples, drifts, outliers and batch effects in data sets. Visualizations include amongst others bar- and violin plots of the (count/intensity) values, mean vs standard deviation plots, MA plots, empirical cumulative distribution function (ECDF) plots, visualizations of the distances between samples, and multiple types of dimension reduction plots. Furthermore, MatrixQCvis allows for differential expression analysis based on the limma (moderated t-tests) and proDA (Wald tests) packages. MatrixQCvis builds upon the popular Bioconductor SummarizedExperiment S4 class and enables thus the facile integration into existing workflows. The package is especially tailored towards metabolomics and proteomics mass spectrometry data, but also allows to assess the data quality of other data types that can be represented in a SummarizedExperiment object.

Maintained by Thomas Naake. Last updated 5 months ago.

visualizationshinyappsguiqualitycontroldimensionreductionmetabolomicsproteomicstranscriptomics

4.74 score 4 scripts

jhk0530

shinyReadme:Generate readme file for Github with shiny

Generate github readme with shiny.

Maintained by Jinhwan Kim. Last updated 8 months ago.

readme-generatorshinyshinyapps

7 stars 2.54 score 2 scripts