Showing 87 of total 87 results (show query)

bioc

pathwayPCA:Integrative Pathway Analysis with Modern PCA Methodology and Gene Selection

pathwayPCA is an integrative analysis tool that implements the principal component analysis (PCA) based pathway analysis approaches described in Chen et al. (2008), Chen et al. (2010), and Chen (2011). pathwayPCA allows users to: (1) Test pathway association with binary, continuous, or survival phenotypes. (2) Extract relevant genes in the pathways using the SuperPCA and AES-PCA approaches. (3) Compute principal components (PCs) based on the selected genes. These estimated latent variables represent pathway activities for individual subjects, which can then be used to perform integrative pathway analysis, such as multi-omics analysis. (4) Extract relevant genes that drive pathway significance as well as data corresponding to these relevant genes for additional in-depth analysis. (5) Perform analyses with enhanced computational efficiency with parallel computing and enhanced data safety with S4-class data objects. (6) Analyze studies with complex experimental designs, with multiple covariates, and with interaction effects, e.g., testing whether pathway association with clinical phenotype is different between male and female subjects. Citations: Chen et al. (2008) <https://doi.org/10.1093/bioinformatics/btn458>; Chen et al. (2010) <https://doi.org/10.1002/gepi.20532>; and Chen (2011) <https://doi.org/10.2202/1544-6115.1697>.

Maintained by Gabriel Odom. Last updated 5 months ago.

copynumbervariationdnamethylationgeneexpressionsnptranscriptiongenepredictiongenesetenrichmentgenesignalinggenetargetgenomewideassociationgenomicvariationcellbiologyepigeneticsfunctionalgenomicsgeneticslipidomicsmetabolomicsproteomicssystemsbiologytranscriptomicsclassificationdimensionreductionfeatureextractionprincipalcomponentregressionsurvivalmultiplecomparisonpathways

11 stars 7.74 score 42 scripts

bioc

densvis:Density-Preserving Data Visualization via Non-Linear Dimensionality Reduction

Implements the density-preserving modification to t-SNE and UMAP described by Narayan et al. (2020) <doi:10.1101/2020.05.12.077776>. The non-linear dimensionality reduction techniques t-SNE and UMAP enable users to summarise complex high-dimensional sequencing data such as single cell RNAseq using lower dimensional representations. These lower dimensional representations enable the visualisation of discrete transcriptional states, as well as continuous trajectory (for example, in early development). However, these methods focus on the local neighbourhood structure of the data. In some cases, this results in misleading visualisations, where the density of cells in the low-dimensional embedding does not represent the transcriptional heterogeneity of data in the original high-dimensional space. den-SNE and densMAP aim to enable more accurate visual interpretation of high-dimensional datasets by producing lower-dimensional embeddings that accurately represent the heterogeneity of the original high-dimensional space, enabling the identification of homogeneous and heterogeneous cell states. This accuracy is accomplished by including in the optimisation process a term which considers the local density of points in the original high-dimensional space. This can help to create visualisations that are more representative of heterogeneity in the original high-dimensional space.

Maintained by Alan OCallaghan. Last updated 5 months ago.

dimensionreductionvisualizationsoftwaresinglecellsequencingcppopenmp

2 stars 4.94 score 11 scripts

bioc

MatrixQCvis:Shiny-based interactive data-quality exploration for omics data

Data quality assessment is an integral part of preparatory data analysis to ensure sound biological information retrieval. We present here the MatrixQCvis package, which provides shiny-based interactive visualization of data quality metrics at the per-sample and per-feature level. It is broadly applicable to quantitative omics data types that come in matrix-like format (features x samples). It enables the detection of low-quality samples, drifts, outliers and batch effects in data sets. Visualizations include amongst others bar- and violin plots of the (count/intensity) values, mean vs standard deviation plots, MA plots, empirical cumulative distribution function (ECDF) plots, visualizations of the distances between samples, and multiple types of dimension reduction plots. Furthermore, MatrixQCvis allows for differential expression analysis based on the limma (moderated t-tests) and proDA (Wald tests) packages. MatrixQCvis builds upon the popular Bioconductor SummarizedExperiment S4 class and enables thus the facile integration into existing workflows. The package is especially tailored towards metabolomics and proteomics mass spectrometry data, but also allows to assess the data quality of other data types that can be represented in a SummarizedExperiment object.

Maintained by Thomas Naake. Last updated 5 months ago.

visualizationshinyappsguiqualitycontroldimensionreductionmetabolomicsproteomicstranscriptomics

4.74 score 4 scripts