Showing 63 of total 63 results (show query)

bodkan

slendr:A Simulation Framework for Spatiotemporal Population Genetics

A framework for simulating spatially explicit genomic data which leverages real cartographic information for programmatic and visual encoding of spatiotemporal population dynamics on real geographic landscapes. Population genetic models are then automatically executed by the 'SLiM' software by Haller et al. (2019) <doi:10.1093/molbev/msy228> behind the scenes, using a custom built-in simulation 'SLiM' script. Additionally, fully abstract spatial models not tied to a specific geographic location are supported, and users can also simulate data from standard, non-spatial, random-mating models. These can be simulated either with the 'SLiM' built-in back-end script, or using an efficient coalescent population genetics simulator 'msprime' by Baumdicker et al. (2022) <doi:10.1093/genetics/iyab229> with a custom-built 'Python' script bundled with the R package. Simulated genomic data is saved in a tree-sequence format and can be loaded, manipulated, and summarised using tree-sequence functionality via an R interface to the 'Python' module 'tskit' by Kelleher et al. (2019) <doi:10.1038/s41588-019-0483-y>. Complete model configuration, simulation and analysis pipelines can be therefore constructed without a need to leave the R environment, eliminating friction between disparate tools for population genetic simulations and data analysis.

Maintained by Martin Petr. Last updated 12 days ago.

popgenpopulation-geneticssimulationsspatial-statistics

1.7 match 56 stars 9.15 score 88 scripts

spatstat

spatstat:Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

Maintained by Adrian Baddeley. Last updated 2 months ago.

cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics

0.5 match 200 stars 16.32 score 5.5k scripts 41 dependents

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 8 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

0.5 match 5 stars 9.09 score 6 scripts 46 dependents