Showing 18 of total 18 results (show query)
bblonder
hypervolume:High Dimensional Geometry, Set Operations, Projection, and Inference Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls
Estimates the shape and volume of high-dimensional datasets and performs set operations: intersection / overlap, union, unique components, inclusion test, and hole detection. Uses stochastic geometry approach to high-dimensional kernel density estimation, support vector machine delineation, and convex hull generation. Applications include modeling trait and niche hypervolumes and species distribution modeling.
Maintained by Benjamin Blonder. Last updated 2 months ago.
142.1 match 23 stars 9.75 score 211 scripts 7 dependentsmlopez-ibanez
eaf:Plots of the Empirical Attainment Function
Computation and visualization of the empirical attainment function (EAF) for the analysis of random sets in multi-criterion optimization. M. López-Ibáñez, L. Paquete, and T. Stützle (2010) <doi:10.1007/978-3-642-02538-9_9>.
Maintained by Manuel López-Ibáñez. Last updated 7 months ago.
eafeaf-differencesepsilonhypervolumeinverted-generational-distancemultiobjective-optimizationsummary-attainment-surfacesvisualizationgsl
20.6 match 18 stars 5.37 score 32 scripts 1 dependentscran
BAT:Biodiversity Assessment Tools
Includes algorithms to assess alpha and beta diversity in all their dimensions (taxonomic, phylogenetic and functional). It allows performing a number of analyses based on species identities/abundances, phylogenetic/functional distances, trees, convex-hulls or kernel density n-dimensional hypervolumes depicting species relationships. Cardoso et al. (2015) <doi:10.1111/2041-210X.12310>.
Maintained by Pedro Cardoso. Last updated 1 years ago.
32.9 match 3.17 score 3 dependentsmulti-objective
moocore:Core Mathematical Functions for Multi-Objective Optimization
Fast implementation of mathematical operations and performance metrics for multi-objective optimization, including filtering and ranking of dominated vectors according to Pareto optimality, computation of the empirical attainment function, V.G. da Fonseca, C.M. Fonseca, A.O. Hall (2001) <doi:10.1007/3-540-44719-9_15>, hypervolume metric, C.M. Fonseca, L. Paquete, M. López-Ibáñez (2006) <doi:10.1109/CEC.2006.1688440>, epsilon indicator, inverted generational distance, and Vorob'ev threshold, expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) <doi:10.1016/j.ejor.2014.07.032>, among others.
Maintained by Manuel López-Ibáñez. Last updated 6 days ago.
11.1 match 11 stars 6.27 score 7 scripts 4 dependentsdanlwarren
ENMTools:Analysis of Niche Evolution using Niche and Distribution Models
Constructing niche models and analyzing patterns of niche evolution. Acts as an interface for many popular modeling algorithms, and allows users to conduct Monte Carlo tests to address basic questions in evolutionary ecology and biogeography. Warren, D.L., R.E. Glor, and M. Turelli (2008) <doi:10.1111/j.1558-5646.2008.00482.x> Glor, R.E., and D.L. Warren (2011) <doi:10.1111/j.1558-5646.2010.01177.x> Warren, D.L., R.E. Glor, and M. Turelli (2010) <doi:10.1111/j.1600-0587.2009.06142.x> Cardillo, M., and D.L. Warren (2016) <doi:10.1111/geb.12455> D.L. Warren, L.J. Beaumont, R. Dinnage, and J.B. Baumgartner (2019) <doi:10.1111/ecog.03900>.
Maintained by Dan Warren. Last updated 2 months ago.
9.7 match 105 stars 6.91 score 126 scriptsjakobbossek
ecr:Evolutionary Computation in R
Framework for building evolutionary algorithms for both single- and multi-objective continuous or discrete optimization problems. A set of predefined evolutionary building blocks and operators is included. Moreover, the user can easily set up custom objective functions, operators, building blocks and representations sticking to few conventions. The package allows both a black-box approach for standard tasks (plug-and-play style) and a much more flexible white-box approach where the evolutionary cycle is written by hand.
Maintained by Jakob Bossek. Last updated 1 years ago.
combinatorial-optimizationevolutionary-algorithmevolutionary-algorithmsevolutionary-strategygenetic-algorithm-frameworkmetaheuristicsmulti-objective-optimizationoptimizationoptimization-frameworkcpp
5.7 match 43 stars 7.36 score 89 scripts 2 dependentsmlr-org
mlr3mbo:Flexible Bayesian Optimization
A modern and flexible approach to Bayesian Optimization / Model Based Optimization building on the 'bbotk' package. 'mlr3mbo' is a toolbox providing both ready-to-use optimization algorithms as well as their fundamental building blocks allowing for straightforward implementation of custom algorithms. Single- and multi-objective optimization is supported as well as mixed continuous, categorical and conditional search spaces. Moreover, using 'mlr3mbo' for hyperparameter optimization of machine learning models within the 'mlr3' ecosystem is straightforward via 'mlr3tuning'. Examples of ready-to-use optimization algorithms include Efficient Global Optimization by Jones et al. (1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006) <doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008) <doi:10.1007/978-3-540-87700-4_78>.
Maintained by Lennart Schneider. Last updated 13 days ago.
automlbayesian-optimizationbbotkblack-box-optimizationgaussian-processhpohyperparameterhyperparameter-optimizationhyperparameter-tuningmachine-learningmlr3model-based-optimizationoptimizationoptimizerrandom-foresttuning
3.5 match 25 stars 8.57 score 120 scripts 3 dependentsluca-scr
mclust:Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation
Gaussian finite mixture models fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization, dimension reduction for visualisation, and resampling-based inference.
Maintained by Luca Scrucca. Last updated 11 months ago.
1.9 match 21 stars 12.23 score 6.6k scripts 587 dependentsmbinois
GPareto:Gaussian Processes for Pareto Front Estimation and Optimization
Gaussian process regression models, a.k.a. Kriging models, are applied to global multi-objective optimization of black-box functions. Multi-objective Expected Improvement and Step-wise Uncertainty Reduction sequential infill criteria are available. A quantification of uncertainty on Pareto fronts is provided using conditional simulations.
Maintained by Mickael Binois. Last updated 1 years ago.
3.5 match 16 stars 5.96 score 38 scripts 1 dependentsmlr-org
bbotk:Black-Box Optimization Toolkit
Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'.
Maintained by Marc Becker. Last updated 3 months ago.
bbotkblack-box-optimizationdata-sciencehyperparameter-optimizationhyperparameter-tuningmachine-learningmlr3optimization
2.0 match 22 stars 9.87 score 166 scripts 14 dependentskeefe-murphy
MoEClust:Gaussian Parsimonious Clustering Models with Covariates and a Noise Component
Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.
Maintained by Keefe Murphy. Last updated 11 days ago.
gaussian-mixture-modelsmixture-of-expertsmodel-based-clustering
2.0 match 7 stars 6.51 score 44 scripts 1 dependentsms609
TreeDist:Calculate and Map Distances Between Phylogenetic Trees
Implements measures of tree similarity, including information-based generalized Robinson-Foulds distances (Phylogenetic Information Distance, Clustering Information Distance, Matching Split Information Distance; Smith 2020) <doi:10.1093/bioinformatics/btaa614>; Jaccard-Robinson-Foulds distances (Bocker et al. 2013) <doi:10.1007/978-3-642-40453-5_13>, including the Nye et al. (2006) metric <doi:10.1093/bioinformatics/bti720>; the Matching Split Distance (Bogdanowicz & Giaro 2012) <doi:10.1109/TCBB.2011.48>; Maximum Agreement Subtree distances; the Kendall-Colijn (2016) distance <doi:10.1093/molbev/msw124>, and the Nearest Neighbour Interchange (NNI) distance, approximated per Li et al. (1996) <doi:10.1007/3-540-61332-3_168>. Includes tools for visualizing mappings of tree space (Smith 2022) <doi:10.1093/sysbio/syab100>, for identifying islands of trees (Silva and Wilkinson 2021) <doi:10.1093/sysbio/syab015>, for calculating the median of sets of trees, and for computing the information content of trees and splits.
Maintained by Martin R. Smith. Last updated 1 months ago.
phylogeneticstree-distancephylogenetic-treestree-distancestreescpp
1.3 match 32 stars 10.32 score 97 scripts 5 dependentsolafmersmann
emoa:Evolutionary Multiobjective Optimization Algorithms
Collection of building blocks for the design and analysis of evolutionary multiobjective optimization algorithms.
Maintained by Olaf Mersmann. Last updated 6 months ago.
2.0 match 8 stars 6.02 score 51 scripts 3 dependentscran
dynRB:Dynamic Range Boxes
Improves the concept of multivariate range boxes, which is highly susceptible for outliers and does not consider the distribution of the data. The package uses dynamic range boxes to overcome these problems.
Maintained by Marco Tschimpke. Last updated 2 years ago.
3.9 match 2.20 score 16 scriptsdots26
MaOEA:Many Objective Evolutionary Algorithm
A set of evolutionary algorithms to solve many-objective optimization. Hybridization between the algorithms are also facilitated. Available algorithms are: 'SMS-EMOA' <doi:10.1016/j.ejor.2006.08.008> 'NSGA-III' <doi:10.1109/TEVC.2013.2281535> 'MO-CMA-ES' <doi:10.1145/1830483.1830573> The following many-objective benchmark problems are also provided: 'DTLZ1'-'DTLZ4' from Deb, et al. (2001) <doi:10.1007/1-84628-137-7_6> and 'WFG4'-'WFG9' from Huband, et al. (2005) <doi:10.1109/TEVC.2005.861417>.
Maintained by Dani Irawan. Last updated 2 years ago.
2.3 match 6 stars 3.78 score 2 scriptsgaoming96
mcca:Multi-Category Classification Accuracy
It contains six common multi-category classification accuracy evaluation measures: Hypervolume Under Manifold (HUM), described in Li and Fine (2008) <doi:10.1093/biostatistics/kxm050>. Correct Classification Percentage (CCP), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), R-Squared Value (RSQ), described in Li, Jiang and Fine (2013) <doi:10.1093/biostatistics/kxs047>. Polytomous Discrimination Index (PDI), described in Van Calster et al. (2012) <doi:10.1007/s10654-012-9733-3>. Li et al. (2018) <doi:10.1177/0962280217692830>. We described all these above measures and our mcca package in Li, Gao and D'Agostino (2019) <doi:10.1002/sim.8103>.
Maintained by Ming Gao. Last updated 6 years ago.
0.5 match 5 stars 3.48 score 12 scriptscran
HUM:Compute HUM Value and Visualize ROC Curves
Tools for computing HUM (Hypervolume Under the Manifold) value to estimate features ability to discriminate the class labels, visualizing the ROC curve for two or three class labels (Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn (2014) <doi:10.1093/bioinformatics/btu086>).
Maintained by Natalia Novoselova. Last updated 3 years ago.
0.5 match 1 stars 1.78 score