Showing 35 of total 35 results (show query)

s-mckay-curtis

mcmcplots:Create Plots from MCMC Output

Functions for convenient plotting and viewing of MCMC output.

Maintained by S. McKay Curtis. Last updated 7 years ago.

1.8 match 4 stars 6.53 score 880 scripts 4 dependents

homerhanumat

tigerData:GC Statistics Datasets

A small, informal collection of datasets useful in undergraduate statistics courses.

Maintained by Homer White. Last updated 1 months ago.

4.0 match 2.18 score 6 scripts

rwoldford

eikosograms:The Picture of Probability

An eikosogram (ancient Greek for probability picture) divides the unit square into rectangular regions whose areas, sides, and widths, represent various probabilities associated with the values of one or more categorical variates. Rectangle areas are joint probabilities, widths are always marginal (though possibly joint margins, i.e. marginal joint distributions of two or more variates), and heights of rectangles are always conditional probabilities. Eikosograms embed the rules of probability and are useful for introducing elementary probability theory, including axioms, marginal, conditional, and joint probabilities, and their relationships (including Bayes theorem as a completely trivial consequence). They are markedly superior to Venn diagrams for this purpose, especially in distinguishing probabilistic independence, mutually exclusive events, coincident events, and associations. They also are useful for identifying and understanding conditional independence structure. As data analysis tools, eikosograms display categorical data in a manner similar to Mosaic plots, especially when only two variates are involved (the only case in which they are essentially identical, though eikosograms purposely disallow spacing between rectangles). Unlike Mosaic plots, eikosograms do not alternate axes as each new categorical variate (beyond two) is introduced. Instead, only one categorical variate, designated the "response", presents on the vertical axis and all others, designated the "conditioning" variates, appear on the horizontal. In this way, conditional probability appears only as height and marginal probabilities as widths. The eikosogram is therefore much better suited to a response model analysis (e.g. logistic model) than is a Mosaic plot. Mosaic plots are better suited to log-linear style modelling as in discrete multivariate analysis. Of course, eikosograms are also suited to discrete multivariate analysis with each variate in turn appearing as the response. This makes it better suited than Mosaic plots to discrete graphical models based on conditional independence graphs (i.e. "Bayesian Networks" or "BayesNets"). The eikosogram and its superiority to Venn diagrams in teaching probability is described in W.H. Cherry and R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/paper.pdf>, its value in exploring conditional independence structure and relation to graphical and log-linear models is described in R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/independence/paper.pdf>, and a number of problems, puzzles, and paradoxes that are easily explained with eikosograms are given in R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/examples/paper.pdf>.

Maintained by Wayne Oldford. Last updated 6 years ago.

0.5 match 4 stars 4.92 score 14 scripts

jerryratcliffe

aoristic:Generates Aoristic Probability Distributions

It can sometimes be difficult to ascertain when some events (such as property crime) occur because the victim is not present when the crime happens. As a result, police databases often record a 'start' (or 'from') date and time, and an 'end' (or 'to') date and time. The time span between these date/times can be minutes, hours, or sometimes days, hence the term 'Aoristic'. Aoristic is one of the past tenses in Greek and represents an uncertain occurrence in time. For events with a location describes with either a latitude/longitude, or X,Y coordinate pair, and a start and end date/time, this package generates an aoristic data frame with aoristic weighted probability values for each hour of the week, for each observation. The coordinates are not necessary for the program to calculate aoristic weights; however, they are part of this package because a spatial component has been integral to aoristic analysis from the start. Dummy coordinates can be introduced if the user only has temporal data. Outputs include an aoristic data frame, as well as summary graphs and displays. For more information see: Ratcliffe, JH (2002) Aoristic signatures and the temporal analysis of high volume crime patterns, Journal of Quantitative Criminology. 18 (1): 23-43. Note: This package replaces an original 'aoristic' package (version 0.6) by George Kikuchi that has been discontinued with his permission.

Maintained by Jerry Ratcliffe. Last updated 2 years ago.

0.5 match 7 stars 3.54 score 9 scripts