Showing 200 of total 4658 results (show query)

spatstat

spatstat.model:Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.

Maintained by Adrian Baddeley. Last updated 7 days ago.

analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference

163.0 match 5 stars 9.09 score 6 scripts 46 dependents

cran

nlme:Linear and Nonlinear Mixed Effects Models

Fit and compare Gaussian linear and nonlinear mixed-effects models.

Maintained by R Core Team. Last updated 2 months ago.

fortran

45.8 match 6 stars 13.00 score 13k scripts 8.7k dependents

cdmuir

photosynthesis:Tools for Plant Ecophysiology & Modeling

Contains modeling and analytical tools for plant ecophysiology. MODELING: Simulate C3 photosynthesis using the Farquhar, von Caemmerer, Berry (1980) <doi:10.1007/BF00386231> model as described in Buckley and Diaz-Espejo (2015) <doi:10.1111/pce.12459>. It uses units to ensure that parameters are properly specified and transformed before calculations. Temperature response functions get automatically "baked" into all parameters based on leaf temperature following Bernacchi et al. (2002) <doi:10.1104/pp.008250>. The package includes boundary layer, cuticular, stomatal, and mesophyll conductances to CO2, which each can vary on the upper and lower portions of the leaf. Use straightforward functions to simulate photosynthesis over environmental gradients such as Photosynthetic Photon Flux Density (PPFD) and leaf temperature, or over trait gradients such as CO2 conductance or photochemistry. ANALYTICAL TOOLS: Fit ACi (Farquhar et al. (1980) <doi:10.1007/BF00386231>) and AQ curves (Marshall & Biscoe (1980) <doi:10.1093/jxb/31.1.29>), temperature responses (Heskel et al. (2016) <doi:10.1073/pnas.1520282113>; Kruse et al. (2008) <doi:10.1111/j.1365-3040.2008.01809.x>, Medlyn et al. (2002) <doi:10.1046/j.1365-3040.2002.00891.x>, Hobbs et al. (2013) <doi:10.1021/cb4005029>), respiration in the light (Kok (1956) <doi:10.1016/0006-3002(56)90003-8>, Walker & Ort (2015) <doi:10.1111/pce.12562>, Yin et al. (2009) <doi:10.1111/j.1365-3040.2009.01934.x>, Yin et al. (2011) <doi:10.1093/jxb/err038>), mesophyll conductance (Harley et al. (1992) <doi:10.1104/pp.98.4.1429>), pressure-volume curves (Koide et al. (2000) <doi:10.1007/978-94-009-2221-1_9>, Sack et al. (2003) <doi:10.1046/j.0016-8025.2003.01058.x>, Tyree et al. (1972) <doi:10.1093/jxb/23.1.267>), hydraulic vulnerability curves (Ogle et al. (2009) <doi:10.1111/j.1469-8137.2008.02760.x>, Pammenter et al. (1998) <doi:10.1093/treephys/18.8-9.589>), and tools for running sensitivity analyses particularly for variables with uncertainty (e.g. g_mc(), gamma_star(), R_d()).

Maintained by Chris Muir. Last updated 9 days ago.

51.5 match 37 stars 7.72 score 64 scripts

allegropiano

GLDEX:Fitting Single and Mixture of Generalised Lambda Distributions

The fitting algorithms considered in this package have two major objectives. One is to provide a smoothing device to fit distributions to data using the weight and unweighted discretised approach based on the bin width of the histogram. The other is to provide a definitive fit to the data set using the maximum likelihood and quantile matching estimation. Other methods such as moment matching, starship method, L moment matching are also provided. Diagnostics on goodness of fit can be done via qqplots, KS-resample tests and comparing mean, variance, skewness and kurtosis of the data with the fitted distribution. References include the following: Karvanen and Nuutinen (2008) "Characterizing the generalized lambda distribution by L-moments" <doi:10.1016/j.csda.2007.06.021>, King and MacGillivray (1999) "A starship method for fitting the generalised lambda distributions" <doi:10.1111/1467-842X.00089>, Su (2005) "A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data" <doi:10.22237/jmasm/1130803560>, Su (2007) "Nmerical Maximum Log Likelihood Estimation for Generalized Lambda Distributions" <doi:10.1016/j.csda.2006.06.008>, Su (2007) "Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R" <doi:10.18637/jss.v021.i09>, Su (2009) "Confidence Intervals for Quantiles Using Generalized Lambda Distributions" <doi:10.1016/j.csda.2009.02.014>, Su (2010) "Chapter 14: Fitting GLDs and Mixture of GLDs to Data using Quantile Matching Method" <doi:10.1201/b10159>, Su (2010) "Chapter 15: Fitting GLD to data using GLDEX 1.0.4 in R" <doi:10.1201/b10159>, Su (2015) "Flexible Parametric Quantile Regression Model" <doi:10.1007/s11222-014-9457-1>, Su (2021) "Flexible parametric accelerated failure time model"<doi:10.1080/10543406.2021.1934854>.

Maintained by Steve Su. Last updated 2 years ago.

107.3 match 3.05 score 93 scripts 2 dependents

r-forge

surveillance:Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena

Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>. A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>. For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) <doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>. twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) <doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) <doi:10.18637/jss.v077.i11>.

Maintained by Sebastian Meyer. Last updated 2 days ago.

cpp

26.4 match 2 stars 10.68 score 446 scripts 3 dependents

brockk

escalation:A Modular Approach to Dose-Finding Clinical Trials

Methods for working with dose-finding clinical trials. We provide implementations of many dose-finding clinical trial designs, including the continual reassessment method (CRM) by O'Quigley et al. (1990) <doi:10.2307/2531628>, the toxicity probability interval (TPI) design by Ji et al. (2007) <doi:10.1177/1740774507079442>, the modified TPI (mTPI) design by Ji et al. (2010) <doi:10.1177/1740774510382799>, the Bayesian optimal interval design (BOIN) by Liu & Yuan (2015) <doi:10.1111/rssc.12089>, EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the design of Wages & Tait (2015) <doi:10.1080/10543406.2014.920873>, and the 3+3 described by Korn et al. (1994) <doi:10.1002/sim.4780131802>. All designs are implemented with a common interface. We also offer optional additional classes to tailor the behaviour of all designs, including avoiding skipping doses, stopping after n patients have been treated at the recommended dose, stopping when a toxicity condition is met, or demanding that n patients are treated before stopping is allowed. By daisy-chaining together these classes using the pipe operator from 'magrittr', it is simple to tailor the behaviour of a dose-finding design so it behaves how the trialist wants. Having provided a flexible interface for specifying designs, we then provide functions to run simulations and calculate dose-paths for future cohorts of patients.

Maintained by Kristian Brock. Last updated 2 months ago.

35.4 match 15 stars 7.91 score 67 scripts

markusfritsch

pdynmc:Moment Condition Based Estimation of Linear Dynamic Panel Data Models

Linear dynamic panel data modeling based on linear and nonlinear moment conditions as proposed by Holtz-Eakin, Newey, and Rosen (1988) <doi:10.2307/1913103>, Ahn and Schmidt (1995) <doi:10.1016/0304-4076(94)01641-C>, and Arellano and Bover (1995) <doi:10.1016/0304-4076(94)01642-D>. Estimation of the model parameters relies on the Generalized Method of Moments (GMM) and instrumental variables (IV) estimation, numerical optimization (when nonlinear moment conditions are employed) and the computation of closed form solutions (when estimation is based on linear moment conditions). One-step, two-step and iterated estimation is available. For inference and specification testing, Windmeijer (2005) <doi:10.1016/j.jeconom.2004.02.005> and doubly corrected standard errors (Hwang, Kang, Lee, 2021 <doi:10.1016/j.jeconom.2020.09.010>) are available. Additionally, serial correlation tests, tests for overidentification, and Wald tests are provided. Functions for visualizing panel data structures and modeling results obtained from GMM estimation are also available. The plot methods include functions to plot unbalanced panel structure, coefficient ranges and coefficient paths across GMM iterations (the latter is implemented according to the plot shown in Hansen and Lee, 2021 <doi:10.3982/ECTA16274>). For a more detailed description of the GMM-based functionality, please see Fritsch, Pua, Schnurbus (2021) <doi:10.32614/RJ-2021-035>. For more details on the IV-based estimation routines, see Fritsch, Pua, and Schnurbus (WP, 2024) and Han and Phillips (2010) <doi:10.1017/S026646660909063X>.

Maintained by Markus Fritsch. Last updated 13 days ago.

35.3 match 4 stars 6.65 score 106 scripts

alexiosg

rugarch:Univariate GARCH Models

ARFIMA, in-mean, external regressors and various GARCH flavors, with methods for fit, forecast, simulation, inference and plotting.

Maintained by Alexios Galanos. Last updated 3 months ago.

cpp

18.3 match 26 stars 12.13 score 1.3k scripts 15 dependents

cran

drc:Analysis of Dose-Response Curves

Analysis of dose-response data is made available through a suite of flexible and versatile model fitting and after-fitting functions.

Maintained by Christian Ritz. Last updated 9 years ago.

24.4 match 8 stars 8.39 score 1.4k scripts 28 dependents

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 28 days ago.

asremlmixed-models

19.4 match 19 stars 9.34 score 200 scripts

willwerscheid

flashier:Empirical Bayes Matrix Factorization

Methods for matrix factorization based on Wang and Stephens (2021) <https://jmlr.org/papers/v22/20-589.html>.

Maintained by Jason Willwerscheid. Last updated 2 months ago.

21.6 match 11 stars 8.32 score 266 scripts

fishfollower

stockassessment:State-Space Assessment Model

Fitting SAM...

Maintained by Anders Nielsen. Last updated 13 days ago.

stockassessmentcpp

22.5 match 49 stars 7.76 score 324 scripts 2 dependents

topepo

caret:Classification and Regression Training

Misc functions for training and plotting classification and regression models.

Maintained by Max Kuhn. Last updated 3 months ago.

9.0 match 1.6k stars 19.24 score 61k scripts 303 dependents

cran

gss:General Smoothing Splines

A comprehensive package for structural multivariate function estimation using smoothing splines.

Maintained by Chong Gu. Last updated 5 months ago.

fortranopenblas

25.4 match 3 stars 6.40 score 137 dependents

dnychka

fields:Tools for Spatial Data

For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics.

Maintained by Douglas Nychka. Last updated 9 months ago.

fortran

12.3 match 15 stars 12.60 score 7.7k scripts 295 dependents

spatstat

spatstat.linnet:Linear Networks Functionality of the 'spatstat' Family

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

Maintained by Adrian Baddeley. Last updated 2 months ago.

density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models

15.2 match 6 stars 9.64 score 35 scripts 43 dependents

tidymodels

infer:Tidy Statistical Inference

The objective of this package is to perform inference using an expressive statistical grammar that coheres with the tidy design framework.

Maintained by Simon Couch. Last updated 6 months ago.

8.9 match 734 stars 15.69 score 3.5k scripts 17 dependents

insightsengineering

tern:Create Common TLGs Used in Clinical Trials

Table, Listings, and Graphs (TLG) library for common outputs used in clinical trials.

Maintained by Joe Zhu. Last updated 2 months ago.

clinical-trialsgraphslistingsnestoutputstables

10.6 match 79 stars 12.62 score 186 scripts 9 dependents

cdriveraus

ctsem:Continuous Time Structural Equation Modelling

Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . Stan based functions are not available on 32 bit Windows systems at present. <https://cdriver.netlify.app/> contains some tutorial blog posts.

Maintained by Charles Driver. Last updated 11 days ago.

stochastic-differential-equationstime-seriescpp

13.2 match 42 stars 9.58 score 366 scripts 1 dependents