Showing 17 of total 17 results (show query)
r-forge
Matrix:Sparse and Dense Matrix Classes and Methods
A rich hierarchy of sparse and dense matrix classes, including general, symmetric, triangular, and diagonal matrices with numeric, logical, or pattern entries. Efficient methods for operating on such matrices, often wrapping the 'BLAS', 'LAPACK', and 'SuiteSparse' libraries.
Maintained by Martin Maechler. Last updated 20 days ago.
1 stars 17.23 score 33k scripts 12k dependentscvxgrp
CVXR:Disciplined Convex Optimization
An object-oriented modeling language for disciplined convex programming (DCP) as described in Fu, Narasimhan, and Boyd (2020, <doi:10.18637/jss.v094.i14>). It allows the user to formulate convex optimization problems in a natural way following mathematical convention and DCP rules. The system analyzes the problem, verifies its convexity, converts it into a canonical form, and hands it off to an appropriate solver to obtain the solution. Interfaces to solvers on CRAN and elsewhere are provided, both commercial and open source.
Maintained by Anqi Fu. Last updated 5 months ago.
207 stars 12.89 score 768 scripts 51 dependentsrudjer
SparseM:Sparse Linear Algebra
Some basic linear algebra functionality for sparse matrices is provided: including Cholesky decomposition and backsolving as well as standard R subsetting and Kronecker products.
Maintained by Roger Koenker. Last updated 9 months ago.
3 stars 11.47 score 306 scripts 1.5k dependentswrathematics
float:32-Bit Floats
R comes with a suite of utilities for linear algebra with "numeric" (double precision) vectors/matrices. However, sometimes single precision (or less!) is more than enough for a particular task. This package extends R's linear algebra facilities to include 32-bit float (single precision) data. Float vectors/matrices have half the precision of their "numeric"-type counterparts but are generally faster to numerically operate on, for a performance vs accuracy trade-off. The internal representation is an S4 class, which allows us to keep the syntax identical to that of base R's. Interaction between floats and base types for binary operators is generally possible; in these cases, type promotion always defaults to the higher precision. The package ships with copies of the single precision 'BLAS' and 'LAPACK', which are automatically built in the event they are not available on the system.
Maintained by Drew Schmidt. Last updated 20 days ago.
float-matrixhpclinear-algebramatrixfortranopenblasopenmp
46 stars 10.53 score 228 scripts 42 dependentskaskr
RTMB:'R' Bindings for 'TMB'
Native 'R' interface to 'TMB' (Template Model Builder) so models can be written entirely in 'R' rather than 'C++'. Automatic differentiation, to any order, is available for a rich subset of 'R' features, including linear algebra for dense and sparse matrices, complex arithmetic, Fast Fourier Transform, probability distributions and special functions. 'RTMB' provides easy access to model fitting and validation following the principles of Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016) <DOI:10.18637/jss.v070.i05> and Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. (2017) <DOI:10.1007/s10651-017-0372-4>.
Maintained by Kasper Kristensen. Last updated 2 months ago.
54 stars 10.49 score 394 scripts 9 dependentsreinhardfurrer
spam:SPArse Matrix
Set of functions for sparse matrix algebra. Differences with other sparse matrix packages are: (1) we only support (essentially) one sparse matrix format, (2) based on transparent and simple structure(s), (3) tailored for MCMC calculations within G(M)RF. (4) and it is fast and scalable (with the extension package spam64). Documentation about 'spam' is provided by vignettes included in this package, see also Furrer and Sain (2010) <doi:10.18637/jss.v036.i10>; see 'citation("spam")' for details.
Maintained by Reinhard Furrer. Last updated 2 months ago.
1 stars 9.36 score 420 scripts 439 dependentsr-forge
distr:Object Oriented Implementation of Distributions
S4-classes and methods for distributions.
Maintained by Peter Ruckdeschel. Last updated 2 months ago.
8.77 score 327 scripts 32 dependentssymengine
symengine:Interface to the 'SymEngine' Library
Provides an R interface to 'SymEngine' <https://github.com/symengine/>, a standalone 'C++' library for fast symbolic manipulation. The package has functionalities for symbolic computation like calculating exact mathematical expressions, solving systems of linear equations and code generation.
Maintained by Jialin Ma. Last updated 1 years ago.
26 stars 8.20 score 33 scripts 10 dependentsshabbychef
madness:Automatic Differentiation of Multivariate Operations
An object that supports automatic differentiation of matrix- and multidimensional-valued functions with respect to multidimensional independent variables. Automatic differentiation is via 'forward accumulation'.
Maintained by Steven E. Pav. Last updated 4 years ago.
31 stars 6.59 score 28 scripts 3 dependentskaskr
RTMBp:'R' Bindings for 'TMB'
Native 'R' interface to 'TMB' (Template Model Builder) so models can be written entirely in 'R' rather than 'C++'. Automatic differentiation, to any order, is available for a rich subset of 'R' features, including linear algebra for dense and sparse matrices, complex arithmetic, Fast Fourier Transform, probability distributions and special functions. 'RTMBp' provides easy access to model fitting and validation following the principles of Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016) <DOI:10.18637/jss.v070.i05> and Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. (2017) <DOI:10.1007/s10651-017-0372-4>.
Maintained by Kasper Kristensen. Last updated 2 months ago.
51 stars 6.44 score 1 scriptsmlysy
SuperGauss:Superfast Likelihood Inference for Stationary Gaussian Time Series
Likelihood evaluations for stationary Gaussian time series are typically obtained via the Durbin-Levinson algorithm, which scales as O(n^2) in the number of time series observations. This package provides a "superfast" O(n log^2 n) algorithm written in C++, crossing over with Durbin-Levinson around n = 300. Efficient implementations of the score and Hessian functions are also provided, leading to superfast versions of inference algorithms such as Newton-Raphson and Hamiltonian Monte Carlo. The C++ code provides a Toeplitz matrix class packaged as a header-only library, to simplify low-level usage in other packages and outside of R.
Maintained by Martin Lysy. Last updated 2 months ago.
2 stars 5.60 score 33 scripts 2 dependentsjeffreyhanson
raptr:Representative and Adequate Prioritization Toolkit in R
Biodiversity is in crisis. The overarching aim of conservation is to preserve biodiversity patterns and processes. To this end, protected areas are established to buffer species and preserve biodiversity processes. But resources are limited and so protected areas must be cost-effective. This package contains tools to generate plans for protected areas (prioritizations), using spatially explicit targets for biodiversity patterns and processes. To obtain solutions in a feasible amount of time, this package uses the commercial 'Gurobi' software (obtained from <https://www.gurobi.com/>). For more information on using this package, see Hanson et al. (2018) <doi:10.1111/2041-210X.12862>.
Maintained by Jeffrey O Hanson. Last updated 1 years ago.
8 stars 5.52 score 83 scriptsprioriactions
prioriactions:Multi-Action Conservation Planning
This uses a mixed integer mathematical programming (MIP) approach for building and solving multi-action planning problems, where the goal is to find an optimal combination of management actions that abate threats, in an efficient way while accounting for spatial aspects. Thus, optimizing the connectivity and conservation effectiveness of the prioritized units and of the deployed actions. The package is capable of handling different commercial (gurobi, CPLEX) and non-commercial (symphony, CBC) MIP solvers. Gurobi optimization solver can be installed using comprehensive instructions in the 'gurobi' installation vignette of the prioritizr package (available in <https://prioritizr.net/articles/gurobi_installation_guide.html>). Instead, 'CPLEX' optimization solver can be obtain from IBM CPLEX web page (available here <https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>). Additionally, the 'rcbc' R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to obtain solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). Methods used in the package refers to Salgado-Rojas et al. (2020) <doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016) <doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015) <doi:10.1371/journal.pone.0128027> and Watts et al. (2009) <doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions website for more information, documentations and examples.
Maintained by Jose Salgado-Rojas. Last updated 2 years ago.
conservationconservation-planoptimizationprioritizationthreatscpp
10 stars 5.40 score 6 scriptskonrad1991
paropt:Parameter Optimizing of ODE-Systems
Enable optimization of parameters of ordinary differential equations. Therefore, using 'SUNDIALS' to solve the ODE-System (see Hindmarsh, Alan C., Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward. (2005) <doi:10.1145/1089014.1089020>). Furthermore, for optimization the particle swarm algorithm is used (see: Akman, Devin, Olcay Akman, and Elsa Schaefer. (2018) <doi:10.1155/2018/9160793> and Sengupta, Saptarshi, Sanchita Basak, and Richard Peters. (2018) <doi:10.3390/make1010010>).
Maintained by Krämer Konrad. Last updated 9 months ago.
optimizationparoptparticle-swarm-optimizationrcpprcpparmadillocpp
3 stars 4.26 score 12 scriptsmbertolacci
WoodburyMatrix:Fast Matrix Operations via the Woodbury Matrix Identity
A hierarchy of classes and methods for manipulating matrices formed implicitly from the sums of the inverses of other matrices, a situation commonly encountered in spatial statistics and related fields. Enables easy use of the Woodbury matrix identity and the matrix determinant lemma to allow computation (e.g., solving linear systems) without having to form the actual matrix. More information on the underlying linear algebra can be found in Harville, D. A. (1997) <doi:10.1007/b98818>.
Maintained by Michael Bertolacci. Last updated 2 years ago.
3 stars 4.22 score 11 scriptscran
salad:Simple Automatic Differentiation
Handles both vector and matrices, using a flexible S4 class for automatic differentiation. The method used is forward automatic differentiation. Many functions and methods have been defined, so that in most cases, functions written without automatic differentiation in mind can be used without change.
Maintained by Hervé Perdry. Last updated 3 months ago.
2.48 score