Showing 29 of total 29 results (show query)
stan-dev
rstan:R Interface to Stan
User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the 'StanHeaders' package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.
Maintained by Ben Goodrich. Last updated 1 days ago.
bayesian-data-analysisbayesian-inferencebayesian-statisticsmcmcstancpp
1.1k stars 18.86 score 14k scripts 281 dependentsstan-dev
loo:Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models
Efficient approximate leave-one-out cross-validation (LOO) for Bayesian models fit using Markov chain Monte Carlo, as described in Vehtari, Gelman, and Gabry (2017) <doi:10.1007/s11222-016-9696-4>. The approximation uses Pareto smoothed importance sampling (PSIS), a new procedure for regularizing importance weights. As a byproduct of the calculations, we also obtain approximate standard errors for estimated predictive errors and for the comparison of predictive errors between models. The package also provides methods for using stacking and other model weighting techniques to average Bayesian predictive distributions.
Maintained by Jonah Gabry. Last updated 16 days ago.
bayesbayesianbayesian-data-analysisbayesian-inferencebayesian-methodsbayesian-statisticscross-validationinformation-criterionmodel-comparisonstan
152 stars 17.30 score 2.6k scripts 297 dependentspaul-buerkner
brms:Bayesian Regression Models using 'Stan'
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Bürkner (2018) <doi:10.32614/RJ-2018-017>; Bürkner (2021) <doi:10.18637/jss.v100.i05>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
Maintained by Paul-Christian Bürkner. Last updated 4 days ago.
bayesian-inferencebrmsmultilevel-modelsstanstatistical-models
1.3k stars 16.64 score 13k scripts 35 dependentsstan-dev
rstanarm:Bayesian Applied Regression Modeling via Stan
Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.
Maintained by Ben Goodrich. Last updated 11 days ago.
bayesianbayesian-data-analysisbayesian-inferencebayesian-methodsbayesian-statisticsmultilevel-modelsrstanrstanarmstanstatistical-modelingcpp
393 stars 15.70 score 5.0k scripts 13 dependentsnicholasjclark
mvgam:Multivariate (Dynamic) Generalized Additive Models
Fit Bayesian Dynamic Generalized Additive Models to multivariate observations. Users can build nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software 'Stan'. References: Clark & Wells (2023) <doi:10.1111/2041-210X.13974>.
Maintained by Nicholas J Clark. Last updated 6 hours ago.
bayesian-statisticsdynamic-factor-modelsecological-modellingforecastinggaussian-processgeneralised-additive-modelsgeneralized-additive-modelsjoint-species-distribution-modellingmultilevel-modelsmultivariate-timeseriesstantime-series-analysistimeseriesvector-autoregressionvectorautoregressioncpp
148 stars 9.92 score 117 scriptsfate-ewi
bayesdfa:Bayesian Dynamic Factor Analysis (DFA) with 'Stan'
Implements Bayesian dynamic factor analysis with 'Stan'. Dynamic factor analysis is a dimension reduction tool for multivariate time series. 'bayesdfa' extends conventional dynamic factor models in several ways. First, extreme events may be estimated in the latent trend by modeling process error with a student-t distribution. Second, alternative constraints (including proportions are allowed). Third, the estimated dynamic factors can be analyzed with hidden Markov models to evaluate support for latent regimes.
Maintained by Eric J. Ward. Last updated 13 days ago.
28 stars 8.27 score 101 scriptsropensci
dynamite:Bayesian Modeling and Causal Inference for Multivariate Longitudinal Data
Easy-to-use and efficient interface for Bayesian inference of complex panel (time series) data using dynamic multivariate panel models by Helske and Tikka (2024) <doi:10.1016/j.alcr.2024.100617>. The package supports joint modeling of multiple measurements per individual, time-varying and time-invariant effects, and a wide range of discrete and continuous distributions. Estimation of these dynamic multivariate panel models is carried out via 'Stan'. For an in-depth tutorial of the package, see (Tikka and Helske, 2024) <doi:10.48550/arXiv.2302.01607>.
Maintained by Santtu Tikka. Last updated 4 days ago.
bayesian-inferencepanel-datastanstatistical-models
29 stars 7.90 score 20 scriptsbiodiverse
ubms:Bayesian Models for Data from Unmarked Animals using 'Stan'
Fit Bayesian hierarchical models of animal abundance and occurrence via the 'rstan' package, the R interface to the 'Stan' C++ library. Supported models include single-season occupancy, dynamic occupancy, and N-mixture abundance models. Covariates on model parameters are specified using a formula-based interface similar to package 'unmarked', while also allowing for estimation of random slope and intercept terms. References: Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
Maintained by Ken Kellner. Last updated 1 months ago.
distance-samplinghierarchical-modelsn-mixture-modeloccupancystanopenblascpp
36 stars 7.90 score 73 scriptscwatson
brainGraph:Graph Theory Analysis of Brain MRI Data
A set of tools for performing graph theory analysis of brain MRI data. It works with data from a Freesurfer analysis (cortical thickness, volumes, local gyrification index, surface area), diffusion tensor tractography data (e.g., from FSL) and resting-state fMRI data (e.g., from DPABI). It contains a graphical user interface for graph visualization and data exploration, along with several functions for generating useful figures.
Maintained by Christopher G. Watson. Last updated 1 years ago.
brain-connectivitybrain-imagingcomplex-networksconnectomeconnectomicsfmrigraph-theorymrinetwork-analysisneuroimagingneurosciencestatisticstractography
188 stars 7.86 score 107 scripts 3 dependentsasael697
bayesforecast:Bayesian Time Series Modeling with Stan
Fit Bayesian time series models using 'Stan' for full Bayesian inference. A wide range of distributions and models are supported, allowing users to fit Seasonal ARIMA, ARIMAX, Dynamic Harmonic Regression, GARCH, t-student innovation GARCH models, asymmetric GARCH, Random Walks, stochastic volatility models for univariate time series. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with typical visualization methods, information criteria such as loglik, AIC, BIC WAIC, Bayes factor and leave-one-out cross-validation methods. References: Hyndman (2017) <doi:10.18637/jss.v027.i03>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
Maintained by Asael Alonzo Matamoros. Last updated 1 years ago.
bayesian-inferenceforecasting-modelsmcmcstantime-series-analysiscpp
45 stars 6.92 score 62 scriptswjakethompson
measr:Bayesian Psychometric Measurement Using 'Stan'
Estimate diagnostic classification models (also called cognitive diagnostic models) with 'Stan'. Diagnostic classification models are confirmatory latent class models, as described by Rupp et al. (2010, ISBN: 978-1-60623-527-0). Automatically generate 'Stan' code for the general loglinear cognitive diagnostic diagnostic model proposed by Henson et al. (2009) <doi:10.1007/s11336-008-9089-5> and other subtypes that introduce additional model constraints. Using the generated 'Stan' code, estimate the model evaluate the model's performance using model fit indices, information criteria, and reliability metrics.
Maintained by W. Jake Thompson. Last updated 2 days ago.
bayesiancdmcmdstanrcognitive-diagnosiscognitive-diagnostic-modelsdcmdiagnostic-classification-modelspsychometricsrstanstancpp
10 stars 6.81 score 31 scriptslindeloev
mcp:Regression with Multiple Change Points
Flexible and informed regression with Multiple Change Points. 'mcp' can infer change points in means, variances, autocorrelation structure, and any combination of these, as well as the parameters of the segments in between. All parameters are estimated with uncertainty and prediction intervals are supported - also near the change points. 'mcp' supports hypothesis testing via Savage-Dickey density ratio, posterior contrasts, and cross-validation. 'mcp' is described in Lindeløv (submitted) <doi:10.31219/osf.io/fzqxv> and generalizes the approach described in Carlin, Gelfand, & Smith (1992) <doi:10.2307/2347570> and Stephens (1994) <doi:10.2307/2986119>.
Maintained by Jonas Kristoffer Lindeløv. Last updated 6 months ago.
108 stars 6.74 score 85 scripts 1 dependentsseananderson
glmmfields:Generalized Linear Mixed Models with Robust Random Fields for Spatiotemporal Modeling
Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.
Maintained by Sean C. Anderson. Last updated 1 years ago.
ecologyextremesspatial-analysisspatiotemporalcpp
50 stars 6.74 score 55 scriptscran
MuMIn:Multi-Model Inference
Tools for model selection and model averaging with support for a wide range of statistical models. Automated model selection through subsets of the maximum model, with optional constraints for model inclusion. Averaging of model parameters and predictions based on model weights derived from information criteria (AICc and alike) or custom model weighting schemes.
Maintained by Kamil Bartoń. Last updated 9 months ago.
8 stars 6.18 score 28 dependentsjeffreypullin
rater:Statistical Models of Repeated Categorical Rating Data
Fit statistical models based on the Dawid-Skene model - Dawid and Skene (1979) <doi:10.2307/2346806> - to repeated categorical rating data. Full Bayesian inference for these models is supported through the Stan modelling language. 'rater' also allows the user to extract and plot key parameters of these models.
Maintained by Jeffrey Pullin. Last updated 2 years ago.
annotationsbayesianbayesian-statisticsstancpp
17 stars 5.83 score 20 scriptscenterforstatistics-ugent
xnet:Two-Step Kernel Ridge Regression for Network Predictions
Fit a two-step kernel ridge regression model for predicting edges in networks, and carry out cross-validation using shortcuts for swift and accurate performance assessment (Stock et al, 2018 <doi:10.1093/bib/bby095> ).
Maintained by Joris Meys. Last updated 4 years ago.
11 stars 5.30 score 12 scriptssebdejean
CCA:Canonical Correlation Analysis
Provides a set of functions that extend the 'cancor' function with new numerical and graphical outputs. It also include a regularized extension of the canonical correlation analysis to deal with datasets with more variables than observations.
Maintained by Sébastien Déjean. Last updated 2 years ago.
4.85 score 334 scripts 3 dependentsgenentech
BayesERtools:Bayesian Exposure-Response Analysis Tools
Suite of tools that facilitate exposure-response analysis using Bayesian methods. The package provides a streamlined workflow for fitting types of models that are commonly used in exposure-response analysis - linear and Emax for continuous endpoints, logistic linear and logistic Emax for binary endpoints, as well as performing simulation and visualization. Learn more about the workflow at <https://genentech.github.io/BayesERbook/>.
Maintained by Kenta Yoshida. Last updated 1 months ago.
2 stars 4.78 score 20 scriptsandrjohns
StanEstimators:Estimate Parameters for Arbitrary R Functions using 'Stan'
Allows for the estimation of parameters for 'R' functions using the various algorithms implemented in the 'Stan' probabilistic programming language.
Maintained by Andrew R. Johnson. Last updated 9 months ago.
25 stars 4.62 score 11 scriptschjackson
disbayes:Bayesian Multi-State Modelling of Chronic Disease Burden Data
Estimation of incidence and case fatality for a chronic disease, given partial information, using a multi-state model. Given data on age-specific mortality and either incidence or prevalence, Bayesian inference is used to estimate the posterior distributions of incidence, case fatality, and functions of these such as prevalence. The methods are described in Jackson et al. (2023) <doi:10.1093/jrsssa/qnac015>.
Maintained by Christopher Jackson. Last updated 1 years ago.
7 stars 4.54 score 10 scriptsflr
FLSAM:An Implementation of the State-Space Assessment Model for FLR
This package provides an FLR wrapper to the SAM state-space assessment model.
Maintained by N.T. Hintzen. Last updated 4 months ago.
4 stars 4.51 score 406 scriptsalexander-pastukhov
bistablehistory:Cumulative History Analysis for Bistable Perception Time Series
Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.
Maintained by Alexander Pastukhov. Last updated 2 years ago.
4.48 score 8 scriptsph-rast
bmgarch:Bayesian Multivariate GARCH Models
Fit Bayesian multivariate GARCH models using 'Stan' for full Bayesian inference. Generate (weighted) forecasts for means, variances (volatility) and correlations. Currently DCC(P,Q), CCC(P,Q), pdBEKK(P,Q), and BEKK(P,Q) parameterizations are implemented, based either on a multivariate gaussian normal or student-t distribution. DCC and CCC models are based on Engle (2002) <doi:10.1198/073500102288618487> and Bollerslev (1990). The BEKK parameterization follows Engle and Kroner (1995) <doi:10.1017/S0266466600009063> while the pdBEKK as well as the estimation approach for this package is described in Rast et al. (2020) <doi:10.31234/osf.io/j57pk>. The fitted models contain 'rstan' objects and can be examined with 'rstan' functions.
Maintained by Philippe Rast. Last updated 5 months ago.
17 stars 4.41 score 5 scriptsmcol
hsstan:Hierarchical Shrinkage Stan Models for Biomarker Selection
Linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers (or more general variable selection), which can be fitted using Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>). It implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017) <doi:10.1214/17-EJS1337SI>), as well as the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2020) <doi:10.1214/20-EJS1711>).
Maintained by Marco Colombo. Last updated 1 years ago.
bayesianfeature-selectionmcmccpp
7 stars 3.66 score 13 scriptsaugustinewigle
poth:Precision of Treatment Hierarchy (POTH)
Calculate POTH for treatment hierarchies from frequentist and Bayesian network meta-analysis. POTH quantifies the certainty in a treatment hierarchy. Subset POTH, POTH residuals, and cumulative POTH can also be calculated to improve interpretation of treatment hierarchies.
Maintained by Augustine Wigle. Last updated 5 months ago.
1 stars 3.65 scorebioc
cancerclass:Development and validation of diagnostic tests from high-dimensional molecular data
The classification protocol starts with a feature selection step and continues with nearest-centroid classification. The accurarcy of the predictor can be evaluated using training and test set validation, leave-one-out cross-validation or in a multiple random validation protocol. Methods for calculation and visualization of continuous prediction scores allow to balance sensitivity and specificity and define a cutoff value according to clinical requirements.
Maintained by Daniel Kosztyla. Last updated 5 months ago.
cancermicroarrayclassificationvisualization
3.30 score 10 scriptsjonasmoss
publipha:Bayesian Meta-Analysis with Publications Bias and P-Hacking
Tools for Bayesian estimation of meta-analysis models that account for publications bias or p-hacking. For publication bias, this package implements a variant of the p-value based selection model of Hedges (1992) <doi:10.1214/ss/1177011364> with discrete selection probabilities. It also implements the mixture of truncated normals model for p-hacking described in Moss and De Bin (2019) <arXiv:1911.12445>.
Maintained by Jonas Moss. Last updated 8 days ago.
3 stars 3.18 score 3 scriptsstephensrmmartin
LMMELSM:Fit Latent Multivariate Mixed Effects Location Scale Models
In addition to modeling the expectation (location) of an outcome, mixed effects location scale models (MELSMs) include submodels on the variance components (scales) directly. This allows models on the within-group variance with mixed effects, and between-group variances with fixed effects. The MELSM can be used to model volatility, intraindividual variance, uncertainty, measurement error variance, and more. Multivariate MELSMs (MMELSMs) extend the model to include multiple correlated outcomes, and therefore multiple locations and scales. The latent multivariate MELSM (LMMELSM) further includes multiple correlated latent variables as outcomes. This package implements two-level mixed effects location scale models on multiple observed or latent outcomes, and between-group variance modeling. Williams, Martin, Liu, and Rast (2020) <doi:10.1027/1015-5759/a000624>. Hedeker, Mermelstein, and Demirtas (2008) <doi:10.1111/j.1541-0420.2007.00924.x>.
Maintained by Stephen Martin. Last updated 3 years ago.
bayesianmixed-effectsmultilevel-modelsstanstatisticscpp
2 stars 3.00 score 9 scriptspsolymos
moosecounter:Adaptive Moose Surveys
Adaptive Moose surveys.
Maintained by Peter Solymos. Last updated 1 years ago.
3 stars 2.18 score 4 scripts