Showing 7 of total 7 results (show query)
mlampros
ClusterR:Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans, K-Medoids and Affinity Propagation Clustering
Gaussian mixture models, k-means, mini-batch-kmeans, k-medoids and affinity propagation clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of 'RcppArmadillo' to speed up the computationally intensive parts of the functions. For more information, see (i) "Clustering in an Object-Oriented Environment" by Anja Struyf, Mia Hubert, Peter Rousseeuw (1997), Journal of Statistical Software, <doi:10.18637/jss.v001.i04>; (ii) "Web-scale k-means clustering" by D. Sculley (2010), ACM Digital Library, <doi:10.1145/1772690.1772862>; (iii) "Armadillo: a template-based C++ library for linear algebra" by Sanderson et al (2016), The Journal of Open Source Software, <doi:10.21105/joss.00026>; (iv) "Clustering by Passing Messages Between Data Points" by Brendan J. Frey and Delbert Dueck, Science 16 Feb 2007: Vol. 315, Issue 5814, pp. 972-976, <doi:10.1126/science.1136800>.
Maintained by Lampros Mouselimis. Last updated 9 months ago.
affinity-propagationcpp11gmmkmeanskmedoids-clusteringmini-batch-kmeansrcpparmadilloopenblascppopenmp
84 stars 11.08 score 640 scripts 24 dependentsstewid
SimInf:A Framework for Data-Driven Stochastic Disease Spread Simulations
Provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and 'OpenMP' (if available) to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make the package extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. The package contains template models and can be extended with user-defined models. For more details see the paper by Widgren, Bauer, Eriksson and Engblom (2019) <doi:10.18637/jss.v091.i12>. The package also provides functionality to fit models to time series data using the Approximate Bayesian Computation Sequential Monte Carlo ('ABC-SMC') algorithm of Toni and others (2009) <doi:10.1098/rsif.2008.0172>.
Maintained by Stefan Widgren. Last updated 18 days ago.
data-drivenepidemiologyhigh-performance-computingmarkov-chainmathematical-modellinggslopenmp
35 stars 10.09 score 227 scriptsfsavje
distances:Tools for Distance Metrics
Provides tools for constructing, manipulating and using distance metrics.
Maintained by Fredrik Savje. Last updated 1 years ago.
17 stars 6.92 score 117 scripts 12 dependentsshaelebrown
TDApplied:Machine Learning and Inference for Topological Data Analysis
Topological data analysis is a powerful tool for finding non-linear global structure in whole datasets. The main tool of topological data analysis is persistent homology, which computes a topological shape descriptor of a dataset called a persistence diagram. 'TDApplied' provides useful and efficient methods for analyzing groups of persistence diagrams with machine learning and statistical inference, and these functions can also interface with other data science packages to form flexible and integrated topological data analysis pipelines.
Maintained by Shael Brown. Last updated 5 months ago.
16 stars 6.51 score 8 scriptsblasbenito
distantia:Advanced Toolset for Efficient Time Series Dissimilarity Analysis
Fast C++ implementation of Dynamic Time Warping for time series dissimilarity analysis, with applications in environmental monitoring and sensor data analysis, climate science, signal processing and pattern recognition, and financial data analysis. Built upon the ideas presented in Benito and Birks (2020) <doi:10.1111/ecog.04895>, provides tools for analyzing time series of varying lengths and structures, including irregular multivariate time series. Key features include individual variable contribution analysis, restricted permutation tests for statistical significance, and imputation of missing data via GAMs. Additionally, the package provides an ample set of tools to prepare and manage time series data.
Maintained by Blas M. Benito. Last updated 1 months ago.
dissimilaritydynamic-time-warpinglock-steptime-seriescpp
23 stars 5.73 score 11 scriptsbioc
mosbi:Molecular Signature identification using Biclustering
This package is a implementation of biclustering ensemble method MoSBi (Molecular signature Identification from Biclustering). MoSBi provides standardized interfaces for biclustering results and can combine their results with a multi-algorithm ensemble approach to compute robust ensemble biclusters on molecular omics data. This is done by computing similarity networks of biclusters and filtering for overlaps using a custom error model. After that, the louvain modularity it used to extract bicluster communities from the similarity network, which can then be converted to ensemble biclusters. Additionally, MoSBi includes several network visualization methods to give an intuitive and scalable overview of the results. MoSBi comes with several biclustering algorithms, but can be easily extended to new biclustering algorithms.
Maintained by Tim Daniel Rose. Last updated 5 months ago.
softwarestatisticalmethodclusteringnetworkcpp
4.30 score 8 scriptsinbo
territoria:Clustering Observations from Breeding Birds into Territoria
Clusters individual observations based on breeding indication and distance between observations.
Maintained by Thierry Onkelinx. Last updated 2 years ago.
birdbreedingclusterhome-rangeterritory
1.70 score 4 scripts