Showing 9 of total 9 results (show query)

eco-hydro

phenofit:Extract Remote Sensing Vegetation Phenology

The merits of 'TIMESAT' and 'phenopix' are adopted. Besides, a simple and growing season dividing method and a practical snow elimination method based on Whittaker were proposed. 7 curve fitting methods and 4 phenology extraction methods were provided. Parameters boundary are considered for every curve fitting methods according to their ecological meaning. And 'optimx' is used to select best optimization method for different curve fitting methods. Reference: Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>; Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. <doi:10.1029/2020JG005636>; Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24; Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 248, 408–417. <doi:10.1016/j.agrformet.2017.10.026>.

Maintained by Dongdong Kong. Last updated 2 months ago.

phenologyremote-sensingopenblascppopenmp

78 stars 7.71 score 332 scripts

kathbaum

DrDimont:Drug Response Prediction from Differential Multi-Omics Networks

While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem. We present a novel network analysis pipeline, DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It allows for comparative conclusions between two conditions and translates them into differential drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived from comparing the condition-specific integrated networks. DrDimont's predictions are explainable, i.e., molecular differences that are the source of high differential drug scores can be retrieved. Our proposed pipeline leverages multi-omics data for differential predictions, e.g. on drug response, and includes prior information on interactions. The case study presented in the vignette uses data published by Krug (2020) <doi:10.1016/j.cell.2020.10.036>. The package license applies only to the software and explicitly not to the included data.

Maintained by Katharina Baum. Last updated 3 years ago.

2.00 score 2 scripts