Showing 185 of total 185 results (show query)

bioc

BASiCS:Bayesian Analysis of Single-Cell Sequencing data

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model to perform statistical analyses of single-cell RNA sequencing datasets in the context of supervised experiments (where the groups of cells of interest are known a priori, e.g. experimental conditions or cell types). BASiCS performs built-in data normalisation (global scaling) and technical noise quantification (based on spike-in genes). BASiCS provides an intuitive detection criterion for highly (or lowly) variable genes within a single group of cells. Additionally, BASiCS can compare gene expression patterns between two or more pre-specified groups of cells. Unlike traditional differential expression tools, BASiCS quantifies changes in expression that lie beyond comparisons of means, also allowing the study of changes in cell-to-cell heterogeneity. The latter can be quantified via a biological over-dispersion parameter that measures the excess of variability that is observed with respect to Poisson sampling noise, after normalisation and technical noise removal. Due to the strong mean/over-dispersion confounding that is typically observed for scRNA-seq datasets, BASiCS also tests for changes in residual over-dispersion, defined by residual values with respect to a global mean/over-dispersion trend.

Maintained by Catalina Vallejos. Last updated 5 months ago.

immunooncologynormalizationsequencingrnaseqsoftwaregeneexpressiontranscriptomicssinglecelldifferentialexpressionbayesiancellbiologybioconductor-packagegene-expressionrcpprcpparmadilloscrna-seqsingle-cellopenblascppopenmp

83 stars 10.14 score 368 scripts 1 dependents

carmonalab

scGate:Marker-Based Cell Type Purification for Single-Cell Sequencing Data

A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. 'scGate' automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. Briefly, 'scGate' takes as input: i) a gene expression matrix stored in a 'Seurat' object and ii) a “gating model” (GM), consisting of a set of marker genes that define the cell population of interest. The GM can be as simple as a single marker gene, or a combination of positive and negative markers. More complex GMs can be constructed in a hierarchical fashion, akin to gating strategies employed in flow cytometry. 'scGate' evaluates the strength of signature marker expression in each cell using the rank-based method 'UCell', and then performs k-nearest neighbor (kNN) smoothing by calculating the mean 'UCell' score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNA-seq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest. See the related publication Andreatta et al. (2022) <doi:10.1093/bioinformatics/btac141>.

Maintained by Massimo Andreatta. Last updated 2 months ago.

filteringmarker-genesscgatesignaturessingle-cell

106 stars 8.38 score 163 scripts

willwerscheid

flashier:Empirical Bayes Matrix Factorization

Methods for matrix factorization based on Wang and Stephens (2021) <https://jmlr.org/papers/v22/20-589.html>.

Maintained by Jason Willwerscheid. Last updated 2 months ago.

11 stars 8.32 score 266 scripts

mrc-ide

malariasimulation:An individual based model for malaria

Specifies the latest and greatest malaria model.

Maintained by Giovanni Charles. Last updated 1 months ago.

cpp

17 stars 8.19 score 146 scripts

bioc

distinct:distinct: a method for differential analyses via hierarchical permutation tests

distinct is a statistical method to perform differential testing between two or more groups of distributions; differential testing is performed via hierarchical non-parametric permutation tests on the cumulative distribution functions (cdfs) of each sample. While most methods for differential expression target differences in the mean abundance between conditions, distinct, by comparing full cdfs, identifies, both, differential patterns involving changes in the mean, as well as more subtle variations that do not involve the mean (e.g., unimodal vs. bi-modal distributions with the same mean). distinct is a general and flexible tool: due to its fully non-parametric nature, which makes no assumptions on how the data was generated, it can be applied to a variety of datasets. It is particularly suitable to perform differential state analyses on single cell data (i.e., differential analyses within sub-populations of cells), such as single cell RNA sequencing (scRNA-seq) and high-dimensional flow or mass cytometry (HDCyto) data. To use distinct one needs data from two or more groups of samples (i.e., experimental conditions), with at least 2 samples (i.e., biological replicates) per group.

Maintained by Simone Tiberi. Last updated 5 months ago.

geneticsrnaseqsequencingdifferentialexpressiongeneexpressionmultiplecomparisonsoftwaretranscriptionstatisticalmethodvisualizationsinglecellflowcytometrygenetargetopenblascpp

11 stars 6.35 score 34 scripts 1 dependents

joemsong

FunChisq:Model-Free Functional Chi-Squared and Exact Tests

Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer 'NMSUSongLab' in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests.

Maintained by Joe Song. Last updated 11 months ago.

cpp

4.37 score 29 scripts

sistia01

DWLS:Gene Expression Deconvolution Using Dampened Weighted Least Squares

The rapid development of single-cell transcriptomic technologies has helped uncover the cellular heterogeneity within cell populations. However, bulk RNA-seq continues to be the main workhorse for quantifying gene expression levels due to technical simplicity and low cost. To most effectively extract information from bulk data given the new knowledge gained from single-cell methods, we have developed a novel algorithm to estimate the cell-type composition of bulk data from a single-cell RNA-seq-derived cell-type signature. Comparison with existing methods using various real RNA-seq data sets indicates that our new approach is more accurate and comprehensive than previous methods, especially for the estimation of rare cell types. More importantly,our method can detect cell-type composition changes in response to external perturbations, thereby providing a valuable, cost-effective method for dissecting the cell-type-specific effects of drug treatments or condition changes. As such, our method is applicable to a wide range of biological and clinical investigations. Dampened weighted least squares ('DWLS') is an estimation method for gene expression deconvolution, in which the cell-type composition of a bulk RNA-seq data set is computationally inferred. This method corrects common biases towards cell types that are characterized by highly expressed genes and/or are highly prevalent, to provide accurate detection across diverse cell types. See: <https://www.nature.com/articles/s41467-019-10802-z.pdf> for more information about the development of 'DWLS' and the methods behind our functions.

Maintained by Adriana Sistig. Last updated 3 years ago.

2 stars 3.62 score 42 scripts

dsokolo

scMappR:Single Cell Mapper

The single cell mapper (scMappR) R package contains a suite of bioinformatic tools that provide experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG). The function "scMappR_and_pathway_analysis" reranks DEGs to generate cell-type specificity scores called cell-weighted fold-changes. Users input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type proportions from RNA-seq deconvolution and the ratio of cell-type proportions between the two conditions to account for changes in cell-type proportion. With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-changes to complete cell-type specific pathway analysis. The "process_dgTMatrix_lists" function in the scMappR package contains an automated scRNA-seq processing pipeline where users input scRNA-seq count data, which is made compatible for scMappR and other R packages that analyze scRNA-seq data. We further used this to store hundreds up regularly updating signature matrices. The functions "tissue_by_celltype_enrichment", "tissue_scMappR_internal", and "tissue_scMappR_custom" combine these consistently processed scRNAseq count data with gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. GWAS hits). Reference: Sokolowski,D.J., Faykoo-Martinez,M., Erdman,L., Hou,H., Chan,C., Zhu,H., Holmes,M.M., Goldenberg,A. and Wilson,M.D. (2021) Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes. NAR Genomics and Bioinformatics. 3(1). Iqab011. <doi:10.1093/nargab/lqab011>.

Maintained by Dustin Sokolowski. Last updated 2 years ago.

4 stars 3.30 score 9 scripts

igordot

scooter:Streamlined scRNA-Seq Analysis Pipeline

Streamlined scRNA-Seq analysis pipeline.

Maintained by Igor Dolgalev. Last updated 1 years ago.

4 stars 2.51 score 16 scripts

blaserlab

blaseRdata:Supporting Data for the blaseRtools Package

What the package does (one paragraph).

Maintained by Brad Blaser. Last updated 1 years ago.

1.70 score 6 scripts