Showing 200 of total 569 results (show query)
bioc
GenomicFeatures:Query the gene models of a given organism/assembly
Extract the genomic locations of genes, transcripts, exons, introns, and CDS, for the gene models stored in a TxDb object. A TxDb object is a small database that contains the gene models of a given organism/assembly. Bioconductor provides a small collection of TxDb objects in the form of ready-to-install TxDb packages for the most commonly studied organisms. Additionally, the user can easily make a TxDb object (or package) for the organism/assembly of their choice by using the tools from the txdbmaker package.
Maintained by H. Pagès. Last updated 5 months ago.
geneticsinfrastructureannotationsequencinggenomeannotationbioconductor-packagecore-package
26 stars 15.34 score 5.3k scripts 339 dependentsbioc
GenomicAlignments:Representation and manipulation of short genomic alignments
Provides efficient containers for storing and manipulating short genomic alignments (typically obtained by aligning short reads to a reference genome). This includes read counting, computing the coverage, junction detection, and working with the nucleotide content of the alignments.
Maintained by Hervé Pagès. Last updated 5 months ago.
infrastructuredataimportgeneticssequencingrnaseqsnpcoveragealignmentimmunooncologybioconductor-packagecore-package
10 stars 15.21 score 3.1k scripts 528 dependentsbioc
BSgenome:Software infrastructure for efficient representation of full genomes and their SNPs
Infrastructure shared by all the Biostrings-based genome data packages.
Maintained by Hervé Pagès. Last updated 2 months ago.
geneticsinfrastructuredatarepresentationsequencematchingannotationsnpbioconductor-packagecore-package
9 stars 14.12 score 1.2k scripts 267 dependentsbioc
ensembldb:Utilities to create and use Ensembl-based annotation databases
The package provides functions to create and use transcript centric annotation databases/packages. The annotation for the databases are directly fetched from Ensembl using their Perl API. The functionality and data is similar to that of the TxDb packages from the GenomicFeatures package, but, in addition to retrieve all gene/transcript models and annotations from the database, ensembldb provides a filter framework allowing to retrieve annotations for specific entries like genes encoded on a chromosome region or transcript models of lincRNA genes. EnsDb databases built with ensembldb contain also protein annotations and mappings between proteins and their encoding transcripts. Finally, ensembldb provides functions to map between genomic, transcript and protein coordinates.
Maintained by Johannes Rainer. Last updated 5 months ago.
geneticsannotationdatasequencingcoverageannotationbioconductorbioconductor-packagesensembl
35 stars 14.08 score 892 scripts 108 dependentsbioc
dada2:Accurate, high-resolution sample inference from amplicon sequencing data
The dada2 package infers exact amplicon sequence variants (ASVs) from high-throughput amplicon sequencing data, replacing the coarser and less accurate OTU clustering approach. The dada2 pipeline takes as input demultiplexed fastq files, and outputs the sequence variants and their sample-wise abundances after removing substitution and chimera errors. Taxonomic classification is available via a native implementation of the RDP naive Bayesian classifier, and species-level assignment to 16S rRNA gene fragments by exact matching.
Maintained by Benjamin Callahan. Last updated 5 months ago.
immunooncologymicrobiomesequencingclassificationmetagenomicsampliconbioconductorbioinformaticsmetabarcodingtaxonomycpp
487 stars 13.17 score 3.0k scripts 4 dependentsbioc
Gviz:Plotting data and annotation information along genomic coordinates
Genomic data analyses requires integrated visualization of known genomic information and new experimental data. Gviz uses the biomaRt and the rtracklayer packages to perform live annotation queries to Ensembl and UCSC and translates this to e.g. gene/transcript structures in viewports of the grid graphics package. This results in genomic information plotted together with your data.
Maintained by Robert Ivanek. Last updated 5 months ago.
visualizationmicroarraysequencing
79 stars 13.05 score 1.4k scripts 46 dependentsbioc
ChIPseeker:ChIPseeker for ChIP peak Annotation, Comparison, and Visualization
This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statstical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.
Maintained by Guangchuang Yu. Last updated 5 months ago.
annotationchipseqsoftwarevisualizationmultiplecomparisonatac-seqchip-seqcomparisonepigeneticsepigenomics
233 stars 13.05 score 1.6k scripts 5 dependentsbioc
minfi:Analyze Illumina Infinium DNA methylation arrays
Tools to analyze & visualize Illumina Infinium methylation arrays.
Maintained by Kasper Daniel Hansen. Last updated 4 months ago.
immunooncologydnamethylationdifferentialmethylationepigeneticsmicroarraymethylationarraymultichanneltwochanneldataimportnormalizationpreprocessingqualitycontrol
60 stars 12.82 score 996 scripts 27 dependentsbioc
plyranges:A fluent interface for manipulating GenomicRanges
A dplyr-like interface for interacting with the common Bioconductor classes Ranges and GenomicRanges. By providing a grammatical and consistent way of manipulating these classes their accessiblity for new Bioconductor users is hopefully increased.
Maintained by Michael Love. Last updated 11 days ago.
infrastructuredatarepresentationworkflowstepcoveragebioconductordata-analysisdplyrgenomic-rangesgenomicstidy-data
144 stars 12.66 score 1.9k scripts 20 dependentsbioc
rtracklayer:R interface to genome annotation files and the UCSC genome browser
Extensible framework for interacting with multiple genome browsers (currently UCSC built-in) and manipulating annotation tracks in various formats (currently GFF, BED, bedGraph, BED15, WIG, BigWig and 2bit built-in). The user may export/import tracks to/from the supported browsers, as well as query and modify the browser state, such as the current viewport.
Maintained by Michael Lawrence. Last updated 4 days ago.
annotationvisualizationdataimportzlibopensslcurl
12.66 score 6.7k scripts 480 dependentsbioc
scDblFinder:scDblFinder
The scDblFinder package gathers various methods for the detection and handling of doublets/multiplets in single-cell sequencing data (i.e. multiple cells captured within the same droplet or reaction volume). It includes methods formerly found in the scran package, the new fast and comprehensive scDblFinder method, and a reimplementation of the Amulet detection method for single-cell ATAC-seq.
Maintained by Pierre-Luc Germain. Last updated 10 days ago.
preprocessingsinglecellrnaseqatacseqdoubletssingle-cell
184 stars 12.38 score 888 scripts 1 dependentsbioc
TFBSTools:Software Package for Transcription Factor Binding Site (TFBS) Analysis
TFBSTools is a package for the analysis and manipulation of transcription factor binding sites. It includes matrices conversion between Position Frequency Matirx (PFM), Position Weight Matirx (PWM) and Information Content Matrix (ICM). It can also scan putative TFBS from sequence/alignment, query JASPAR database and provides a wrapper of de novo motif discovery software.
Maintained by Ge Tan. Last updated 17 days ago.
motifannotationgeneregulationmotifdiscoverytranscriptionalignment
28 stars 12.36 score 1.1k scripts 18 dependentsbioc
bsseq:Analyze, manage and store whole-genome methylation data
A collection of tools for analyzing and visualizing whole-genome methylation data from sequencing. This includes whole-genome bisulfite sequencing and Oxford nanopore data.
Maintained by Kasper Daniel Hansen. Last updated 3 months ago.
37 stars 12.26 score 676 scripts 15 dependentsbioc
ggbio:Visualization tools for genomic data
The ggbio package extends and specializes the grammar of graphics for biological data. The graphics are designed to answer common scientific questions, in particular those often asked of high throughput genomics data. All core Bioconductor data structures are supported, where appropriate. The package supports detailed views of particular genomic regions, as well as genome-wide overviews. Supported overviews include ideograms and grand linear views. High-level plots include sequence fragment length, edge-linked interval to data view, mismatch pileup, and several splicing summaries.
Maintained by Michael Lawrence. Last updated 5 months ago.
111 stars 12.23 score 734 scripts 16 dependentsstuart-lab
Signac:Analysis of Single-Cell Chromatin Data
A framework for the analysis and exploration of single-cell chromatin data. The 'Signac' package contains functions for quantifying single-cell chromatin data, computing per-cell quality control metrics, dimension reduction and normalization, visualization, and DNA sequence motif analysis. Reference: Stuart et al. (2021) <doi:10.1038/s41592-021-01282-5>.
Maintained by Tim Stuart. Last updated 7 months ago.
atacbioinformaticssingle-cellzlibcpp
355 stars 12.18 score 3.7k scripts 1 dependentsbioc
ShortRead:FASTQ input and manipulation
This package implements sampling, iteration, and input of FASTQ files. The package includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats.
Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.
dataimportsequencingqualitycontrolbioconductor-packagecore-packagezlibcpp
8 stars 12.08 score 1.8k scripts 49 dependentsbioc
methylKit:DNA methylation analysis from high-throughput bisulfite sequencing results
methylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from RRBS and its variants, but also target-capture methods and whole genome bisulfite sequencing. It also has functions to analyze base-pair resolution 5hmC data from experimental protocols such as oxBS-Seq and TAB-Seq. Methylation calling can be performed directly from Bismark aligned BAM files.
Maintained by Altuna Akalin. Last updated 29 days ago.
dnamethylationsequencingmethylseqgenome-biologymethylationstatistical-analysisvisualizationcurlbzip2xz-utilszlibcpp
220 stars 11.80 score 578 scripts 3 dependentsbioc
bumphunter:Bump Hunter
Tools for finding bumps in genomic data
Maintained by Tamilselvi Guharaj. Last updated 5 months ago.
dnamethylationepigeneticsinfrastructuremultiplecomparisonimmunooncology
16 stars 11.61 score 210 scripts 43 dependentsbioc
systemPipeR:systemPipeR: Workflow Environment for Data Analysis and Report Generation
systemPipeR is a multipurpose data analysis workflow environment that unifies R with command-line tools. It enables scientists to analyze many types of large- or small-scale data on local or distributed computer systems with a high level of reproducibility, scalability and portability. At its core is a command-line interface (CLI) that adopts the Common Workflow Language (CWL). This design allows users to choose for each analysis step the optimal R or command-line software. It supports both end-to-end and partial execution of workflows with built-in restart functionalities. Efficient management of complex analysis tasks is accomplished by a flexible workflow control container class. Handling of large numbers of input samples and experimental designs is facilitated by consistent sample annotation mechanisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing workflows, customize them or design entirely new ones while taking advantage of widely adopted data structures within the Bioconductor ecosystem. Another important core functionality is the generation of reproducible scientific analysis and technical reports. For result interpretation, systemPipeR offers a wide range of plotting functionality, while an associated Shiny App offers many useful functionalities for interactive result exploration. The vignettes linked from this page include (1) a general introduction, (2) a description of technical details, and (3) a collection of workflow templates.
Maintained by Thomas Girke. Last updated 5 months ago.
geneticsinfrastructuredataimportsequencingrnaseqriboseqchipseqmethylseqsnpgeneexpressioncoveragegenesetenrichmentalignmentqualitycontrolimmunooncologyreportwritingworkflowstepworkflowmanagement
53 stars 11.52 score 344 scripts 3 dependentsbioc
VariantAnnotation:Annotation of Genetic Variants
Annotate variants, compute amino acid coding changes, predict coding outcomes.
Maintained by Bioconductor Package Maintainer. Last updated 3 months ago.
dataimportsequencingsnpannotationgeneticsvariantannotationcurlbzip2xz-utilszlib
11.39 score 1.9k scripts 152 dependentsbioc
karyoploteR:Plot customizable linear genomes displaying arbitrary data
karyoploteR creates karyotype plots of arbitrary genomes and offers a complete set of functions to plot arbitrary data on them. It mimicks many R base graphics functions coupling them with a coordinate change function automatically mapping the chromosome and data coordinates into the plot coordinates. In addition to the provided data plotting functions, it is easy to add new ones.
Maintained by Bernat Gel. Last updated 5 months ago.
visualizationcopynumbervariationsequencingcoveragednaseqchipseqmethylseqdataimportonechannelbioconductorbioinformaticsdata-visualizationgenomegenomics-visualizationplotting-in-r
307 stars 11.25 score 656 scripts 4 dependentsbioc
genomation:Summary, annotation and visualization of genomic data
A package for summary and annotation of genomic intervals. Users can visualize and quantify genomic intervals over pre-defined functional regions, such as promoters, exons, introns, etc. The genomic intervals represent regions with a defined chromosome position, which may be associated with a score, such as aligned reads from HT-seq experiments, TF binding sites, methylation scores, etc. The package can use any tabular genomic feature data as long as it has minimal information on the locations of genomic intervals. In addition, It can use BAM or BigWig files as input.
Maintained by Altuna Akalin. Last updated 5 months ago.
annotationsequencingvisualizationcpgislandcpp
76 stars 11.13 score 738 scripts 5 dependentsbioc
tximeta:Transcript Quantification Import with Automatic Metadata
Transcript quantification import from Salmon and other quantifiers with automatic attachment of transcript ranges and release information, and other associated metadata. De novo transcriptomes can be linked to the appropriate sources with linkedTxomes and shared for computational reproducibility.
Maintained by Michael Love. Last updated 2 months ago.
annotationgenomeannotationdataimportpreprocessingrnaseqsinglecelltranscriptomicstranscriptiongeneexpressionfunctionalgenomicsreproducibleresearchreportwritingimmunooncology
67 stars 10.58 score 466 scripts 1 dependentsbioc
ORFik:Open Reading Frames in Genomics
R package for analysis of transcript and translation features through manipulation of sequence data and NGS data like Ribo-Seq, RNA-Seq, TCP-Seq and CAGE. It is generalized in the sense that any transcript region can be analysed, as the name hints to it was made with investigation of ribosomal patterns over Open Reading Frames (ORFs) as it's primary use case. ORFik is extremely fast through use of C++, data.table and GenomicRanges. Package allows to reassign starts of the transcripts with the use of CAGE-Seq data, automatic shifting of RiboSeq reads, finding of Open Reading Frames for whole genomes and much more.
Maintained by Haakon Tjeldnes. Last updated 1 months ago.
immunooncologysoftwaresequencingriboseqrnaseqfunctionalgenomicscoveragealignmentdataimportcpp
33 stars 10.56 score 115 scripts 2 dependentsbioc
ballgown:Flexible, isoform-level differential expression analysis
Tools for statistical analysis of assembled transcriptomes, including flexible differential expression analysis, visualization of transcript structures, and matching of assembled transcripts to annotation.
Maintained by Jack Fu. Last updated 5 months ago.
immunooncologyrnaseqstatisticalmethodpreprocessingdifferentialexpression
145 stars 10.51 score 338 scripts 1 dependentsssnn-airr
alakazam:Immunoglobulin Clonal Lineage and Diversity Analysis
Provides methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In particular, immunoglobulin (Ig) sequence lineage reconstruction, lineage topology analysis, diversity profiling, amino acid property analysis and gene usage. Citations: Gupta and Vander Heiden, et al (2017) <doi:10.1093/bioinformatics/btv359>, Stern, Yaari and Vander Heiden, et al (2014) <doi:10.1126/scitranslmed.3008879>.
Maintained by Susanna Marquez. Last updated 3 months ago.
10.33 score 424 scripts 7 dependentsbioc
EDASeq:Exploratory Data Analysis and Normalization for RNA-Seq
Numerical and graphical summaries of RNA-Seq read data. Within-lane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization (Risso et al., 2011). Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization (Bullard et al., 2010).
Maintained by Davide Risso. Last updated 5 months ago.
immunooncologysequencingrnaseqpreprocessingqualitycontroldifferentialexpression
5 stars 10.24 score 594 scripts 9 dependentsbioc
cBioPortalData:Exposes and Makes Available Data from the cBioPortal Web Resources
The cBioPortalData R package accesses study datasets from the cBio Cancer Genomics Portal. It accesses the data either from the pre-packaged zip / tar files or from the API interface that was recently implemented by the cBioPortal Data Team. The package can provide data in either tabular format or with MultiAssayExperiment object that uses familiar Bioconductor data representations.
Maintained by Marcel Ramos. Last updated 8 days ago.
softwareinfrastructurethirdpartyclientbioconductor-packagenci-itcru24ca289073
33 stars 10.17 score 147 scripts 4 dependentsbioc
singleCellTK:Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data
The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
Maintained by Joshua David Campbell. Last updated 1 months ago.
singlecellgeneexpressiondifferentialexpressionalignmentclusteringimmunooncologybatcheffectnormalizationqualitycontroldataimportgui
182 stars 10.17 score 252 scriptsbioc
plotgardener:Coordinate-Based Genomic Visualization Package for R
Coordinate-based genomic visualization package for R. It grants users the ability to programmatically produce complex, multi-paneled figures. Tailored for genomics, plotgardener allows users to visualize large complex genomic datasets and provides exquisite control over how plots are placed and arranged on a page.
Maintained by Nicole Kramer. Last updated 5 months ago.
visualizationgenomeannotationfunctionalgenomicsgenomeassemblyhiccpp
309 stars 10.17 score 167 scripts 3 dependentsbioc
QDNAseq:Quantitative DNA Sequencing for Chromosomal Aberrations
Quantitative DNA sequencing for chromosomal aberrations. The genome is divided into non-overlapping fixed-sized bins, number of sequence reads in each counted, adjusted with a simultaneous two-dimensional loess correction for sequence mappability and GC content, and filtered to remove spurious regions in the genome. Downstream steps of segmentation and calling are also implemented via packages DNAcopy and CGHcall, respectively.
Maintained by Daoud Sie. Last updated 5 months ago.
copynumbervariationdnaseqgeneticsgenomeannotationpreprocessingqualitycontrolsequencing
49 stars 10.10 score 177 scripts 4 dependentsbioc
derfinder:Annotation-agnostic differential expression analysis of RNA-seq data at base-pair resolution via the DER Finder approach
This package provides functions for annotation-agnostic differential expression analysis of RNA-seq data. Two implementations of the DER Finder approach are included in this package: (1) single base-level F-statistics and (2) DER identification at the expressed regions-level. The DER Finder approach can also be used to identify differentially bounded ChIP-seq peaks.
Maintained by Leonardo Collado-Torres. Last updated 4 months ago.
differentialexpressionsequencingrnaseqchipseqdifferentialpeakcallingsoftwareimmunooncologycoverageannotation-agnosticbioconductorderfinder
42 stars 10.03 score 78 scripts 6 dependentsbioc
goseq:Gene Ontology analyser for RNA-seq and other length biased data
Detects Gene Ontology and/or other user defined categories which are over/under represented in RNA-seq data.
Maintained by Federico Marini. Last updated 5 months ago.
immunooncologysequencinggogeneexpressiontranscriptionrnaseqdifferentialexpressionannotationgenesetenrichmentkeggpathwayssoftware
2 stars 9.97 score 636 scripts 9 dependentsbioc
rGREAT:GREAT Analysis - Functional Enrichment on Genomic Regions
GREAT (Genomic Regions Enrichment of Annotations Tool) is a type of functional enrichment analysis directly performed on genomic regions. This package implements the GREAT algorithm (the local GREAT analysis), also it supports directly interacting with the GREAT web service (the online GREAT analysis). Both analysis can be viewed by a Shiny application. rGREAT by default supports more than 600 organisms and a large number of gene set collections, as well as self-provided gene sets and organisms from users. Additionally, it implements a general method for dealing with background regions.
Maintained by Zuguang Gu. Last updated 17 days ago.
genesetenrichmentgopathwayssoftwaresequencingwholegenomegenomeannotationcoveragecpp
86 stars 9.96 score 320 scripts 1 dependentsbioc
RUVSeq:Remove Unwanted Variation from RNA-Seq Data
This package implements the remove unwanted variation (RUV) methods of Risso et al. (2014) for the normalization of RNA-Seq read counts between samples.
Maintained by Davide Risso. Last updated 5 months ago.
immunooncologydifferentialexpressionpreprocessingrnaseqsoftware
13 stars 9.91 score 482 scripts 5 dependentsbioc
methylumi:Handle Illumina methylation data
This package provides classes for holding and manipulating Illumina methylation data. Based on eSet, it can contain MIAME information, sample information, feature information, and multiple matrices of data. An "intelligent" import function, methylumiR can read the Illumina text files and create a MethyLumiSet. methylumIDAT can directly read raw IDAT files from HumanMethylation27 and HumanMethylation450 microarrays. Normalization, background correction, and quality control features for GoldenGate, Infinium, and Infinium HD arrays are also included.
Maintained by Sean Davis. Last updated 5 months ago.
dnamethylationtwochannelpreprocessingqualitycontrolcpgisland
9 stars 9.90 score 89 scripts 9 dependentsbioc
PureCN:Copy number calling and SNV classification using targeted short read sequencing
This package estimates tumor purity, copy number, and loss of heterozygosity (LOH), and classifies single nucleotide variants (SNVs) by somatic status and clonality. PureCN is designed for targeted short read sequencing data, integrates well with standard somatic variant detection and copy number pipelines, and has support for tumor samples without matching normal samples.
Maintained by Markus Riester. Last updated 1 days ago.
copynumbervariationsoftwaresequencingvariantannotationvariantdetectioncoverageimmunooncologybioconductor-packagecell-free-dnacopy-numberlohtumor-heterogeneitytumor-mutational-burdentumor-purity
132 stars 9.88 score 40 scriptsbioc
GenVisR:Genomic Visualizations in R
Produce highly customizable publication quality graphics for genomic data primarily at the cohort level.
Maintained by Zachary Skidmore. Last updated 5 months ago.
infrastructuredatarepresentationclassificationdnaseq
217 stars 9.87 score 76 scriptsbioc
annotatr:Annotation of Genomic Regions to Genomic Annotations
Given a set of genomic sites/regions (e.g. ChIP-seq peaks, CpGs, differentially methylated CpGs or regions, SNPs, etc.) it is often of interest to investigate the intersecting genomic annotations. Such annotations include those relating to gene models (promoters, 5'UTRs, exons, introns, and 3'UTRs), CpGs (CpG islands, CpG shores, CpG shelves), or regulatory sequences such as enhancers. The annotatr package provides an easy way to summarize and visualize the intersection of genomic sites/regions with genomic annotations.
Maintained by Raymond G. Cavalcante. Last updated 5 months ago.
softwareannotationgenomeannotationfunctionalgenomicsvisualizationgenome-annotation
26 stars 9.76 score 246 scripts 5 dependentsbioc
RTCGAToolbox:A new tool for exporting TCGA Firehose data
Managing data from large scale projects such as The Cancer Genome Atlas (TCGA) for further analysis is an important and time consuming step for research projects. Several efforts, such as Firehose project, make TCGA pre-processed data publicly available via web services and data portals but it requires managing, downloading and preparing the data for following steps. We developed an open source and extensible R based data client for Firehose pre-processed data and demonstrated its use with sample case studies. Results showed that RTCGAToolbox could improve data management for researchers who are interested with TCGA data. In addition, it can be integrated with other analysis pipelines for following data analysis.
Maintained by Marcel Ramos. Last updated 3 months ago.
differentialexpressiongeneexpressionsequencing
18 stars 9.75 score 76 scripts 5 dependentsbioc
txdbmaker:Tools for making TxDb objects from genomic annotations
A set of tools for making TxDb objects from genomic annotations from various sources (e.g. UCSC, Ensembl, and GFF files). These tools allow the user to download the genomic locations of transcripts, exons, and CDS, for a given assembly, and to import them in a TxDb object. TxDb objects are implemented in the GenomicFeatures package, together with flexible methods for extracting the desired features in convenient formats.
Maintained by H. Pagès. Last updated 4 months ago.
infrastructuredataimportannotationgenomeannotationgenomeassemblygeneticssequencingbioconductor-packagecore-package
3 stars 9.68 score 92 scripts 87 dependentsbioc
TCGAutils:TCGA utility functions for data management
A suite of helper functions for checking and manipulating TCGA data including data obtained from the curatedTCGAData experiment package. These functions aim to simplify and make working with TCGA data more manageable. Exported functions include those that import data from flat files into Bioconductor objects, convert row annotations, and identifier translation via the GDC API.
Maintained by Marcel Ramos. Last updated 3 months ago.
softwareworkflowsteppreprocessingdataimportbioconductor-packagetcgau24ca289073utilities
27 stars 9.66 score 210 scripts 10 dependentsbioc
pcaExplorer:Interactive Visualization of RNA-seq Data Using a Principal Components Approach
This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.
Maintained by Federico Marini. Last updated 3 months ago.
immunooncologyvisualizationrnaseqdimensionreductionprincipalcomponentqualitycontrolguireportwritingshinyappsbioconductorprincipal-componentsreproducible-researchrna-seq-analysisrna-seq-datashinytranscriptomeuser-friendly
56 stars 9.63 score 180 scriptsbioc
recount:Explore and download data from the recount project
Explore and download data from the recount project available at https://jhubiostatistics.shinyapps.io/recount/. Using the recount package you can download RangedSummarizedExperiment objects at the gene, exon or exon-exon junctions level, the raw counts, the phenotype metadata used, the urls to the sample coverage bigWig files or the mean coverage bigWig file for a particular study. The RangedSummarizedExperiment objects can be used by different packages for performing differential expression analysis. Using http://bioconductor.org/packages/derfinder you can perform annotation-agnostic differential expression analyses with the data from the recount project as described at http://www.nature.com/nbt/journal/v35/n4/full/nbt.3838.html.
Maintained by Leonardo Collado-Torres. Last updated 4 months ago.
coveragedifferentialexpressiongeneexpressionrnaseqsequencingsoftwaredataimportimmunooncologyannotation-agnosticbioconductorcountderfinderdeseq2exongenehumanilluminajunctionrecount
41 stars 9.57 score 498 scripts 3 dependentsbioc
GenomicInteractions:Utilities for handling genomic interaction data
Utilities for handling genomic interaction data such as ChIA-PET or Hi-C, annotating genomic features with interaction information, and producing plots and summary statistics.
Maintained by Liz Ing-Simmons. Last updated 5 months ago.
softwareinfrastructuredataimportdatarepresentationhic
7 stars 9.31 score 162 scripts 5 dependentsbioc
CNEr:CNE Detection and Visualization
Large-scale identification and advanced visualization of sets of conserved noncoding elements.
Maintained by Ge Tan. Last updated 5 months ago.
generegulationvisualizationdataimport
3 stars 9.28 score 35 scripts 19 dependentsbioc
IsoformSwitchAnalyzeR:Identify, Annotate and Visualize Isoform Switches with Functional Consequences from both short- and long-read RNA-seq data
Analysis of alternative splicing and isoform switches with predicted functional consequences (e.g. gain/loss of protein domains etc.) from quantification of all types of RNASeq by tools such as Kallisto, Salmon, StringTie, Cufflinks/Cuffdiff etc.
Maintained by Kristoffer Vitting-Seerup. Last updated 5 months ago.
geneexpressiontranscriptionalternativesplicingdifferentialexpressiondifferentialsplicingvisualizationstatisticalmethodtranscriptomevariantbiomedicalinformaticsfunctionalgenomicssystemsbiologytranscriptomicsrnaseqannotationfunctionalpredictiongenepredictiondataimportmultiplecomparisonbatcheffectimmunooncology
108 stars 9.26 score 125 scriptsbioc
OUTRIDER:OUTRIDER - OUTlier in RNA-Seq fInDER
Identification of aberrant gene expression in RNA-seq data. Read count expectations are modeled by an autoencoder to control for confounders in the data. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. Furthermore, OUTRIDER provides useful plotting functions to analyze and visualize the results.
Maintained by Christian Mertes. Last updated 5 months ago.
immunooncologyrnaseqtranscriptomicsalignmentsequencinggeneexpressiongeneticscount-datadiagnosticsexpression-analysismendelian-geneticsoutlier-detectionrna-seqopenblascpp
50 stars 9.07 score 110 scripts 1 dependentsbioc
bambu:Context-Aware Transcript Quantification from Long Read RNA-Seq data
bambu is a R package for multi-sample transcript discovery and quantification using long read RNA-Seq data. You can use bambu after read alignment to obtain expression estimates for known and novel transcripts and genes. The output from bambu can directly be used for visualisation and downstream analysis such as differential gene expression or transcript usage.
Maintained by Ying Chen. Last updated 2 months ago.
alignmentcoveragedifferentialexpressionfeatureextractiongeneexpressiongenomeannotationgenomeassemblyimmunooncologylongreadmultiplecomparisonnormalizationrnaseqregressionsequencingsoftwaretranscriptiontranscriptomicsbambubioconductorlong-readsnanoporenanopore-sequencingrna-seqrna-seq-analysistranscript-quantificationtranscript-reconstructioncpp
203 stars 9.04 score 91 scripts 1 dependentsbioc
scPipe:Pipeline for single cell multi-omic data pre-processing
A preprocessing pipeline for single cell RNA-seq/ATAC-seq data that starts from the fastq files and produces a feature count matrix with associated quality control information. It can process fastq data generated by CEL-seq, MARS-seq, Drop-seq, Chromium 10x and SMART-seq protocols.
Maintained by Shian Su. Last updated 3 months ago.
immunooncologysoftwaresequencingrnaseqgeneexpressionsinglecellvisualizationsequencematchingpreprocessingqualitycontrolgenomeannotationdataimportcurlbzip2xz-utilszlibcpp
68 stars 9.02 score 84 scriptsbioc
regioneR:Association analysis of genomic regions based on permutation tests
regioneR offers a statistical framework based on customizable permutation tests to assess the association between genomic region sets and other genomic features.
Maintained by Bernat Gel. Last updated 5 months ago.
geneticschipseqdnaseqmethylseqcopynumbervariation
9.00 score 2.7k scripts 21 dependentsbioc
scone:Single Cell Overview of Normalized Expression data
SCONE is an R package for comparing and ranking the performance of different normalization schemes for single-cell RNA-seq and other high-throughput analyses.
Maintained by Davide Risso. Last updated 1 months ago.
immunooncologynormalizationpreprocessingqualitycontrolgeneexpressionrnaseqsoftwaretranscriptomicssequencingsinglecellcoverage
53 stars 9.00 score 104 scriptsbioc
motifbreakR:A Package For Predicting The Disruptiveness Of Single Nucleotide Polymorphisms On Transcription Factor Binding Sites
We introduce motifbreakR, which allows the biologist to judge in the first place whether the sequence surrounding the polymorphism is a good match, and in the second place how much information is gained or lost in one allele of the polymorphism relative to another. MotifbreakR is both flexible and extensible over previous offerings; giving a choice of algorithms for interrogation of genomes with motifs from public sources that users can choose from; these are 1) a weighted-sum probability matrix, 2) log-probabilities, and 3) weighted by relative entropy. MotifbreakR can predict effects for novel or previously described variants in public databases, making it suitable for tasks beyond the scope of its original design. Lastly, it can be used to interrogate any genome curated within Bioconductor (currently there are 32 species, a total of 109 versions).
Maintained by Simon Gert Coetzee. Last updated 5 months ago.
chipseqvisualizationmotifannotationtranscription
28 stars 8.89 score 103 scriptsbioc
qpgraph:Estimation of Genetic and Molecular Regulatory Networks from High-Throughput Genomics Data
Estimate gene and eQTL networks from high-throughput expression and genotyping assays.
Maintained by Robert Castelo. Last updated 1 days ago.
microarraygeneexpressiontranscriptionpathwaysnetworkinferencegraphandnetworkgeneregulationgeneticsgeneticvariabilitysnpsoftwareopenblas
3 stars 8.72 score 20 scripts 3 dependentsbioc
trackViewer:A R/Bioconductor package with web interface for drawing elegant interactive tracks or lollipop plot to facilitate integrated analysis of multi-omics data
Visualize mapped reads along with annotation as track layers for NGS dataset such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data.
Maintained by Jianhong Ou. Last updated 3 days ago.
8.68 score 145 scripts 2 dependentsbioc
QuasR:Quantify and Annotate Short Reads in R
This package provides a framework for the quantification and analysis of Short Reads. It covers a complete workflow starting from raw sequence reads, over creation of alignments and quality control plots, to the quantification of genomic regions of interest. Read alignments are either generated through Rbowtie (data from DNA/ChIP/ATAC/Bis-seq experiments) or Rhisat2 (data from RNA-seq experiments that require spliced alignments), or can be provided in the form of bam files.
Maintained by Michael Stadler. Last updated 1 months ago.
geneticspreprocessingsequencingchipseqrnaseqmethylseqcoveragealignmentqualitycontrolimmunooncologycurlbzip2xz-utilszlibcpp
6 stars 8.63 score 79 scripts 1 dependentsbioc
FRASER:Find RAre Splicing Events in RNA-Seq Data
Detection of rare aberrant splicing events in transcriptome profiles. Read count ratio expectations are modeled by an autoencoder to control for confounding factors in the data. Given these expectations, the ratios are assumed to follow a beta-binomial distribution with a junction specific dispersion. Outlier events are then identified as read-count ratios that deviate significantly from this distribution. FRASER is able to detect alternative splicing, but also intron retention. The package aims to support diagnostics in the field of rare diseases where RNA-seq is performed to identify aberrant splicing defects.
Maintained by Christian Mertes. Last updated 5 months ago.
rnaseqalternativesplicingsequencingsoftwaregeneticscoverageaberrant-splicingdiagnosticsoutlier-detectionrare-diseaserna-seqsplicingopenblascpp
41 stars 8.50 score 155 scriptsbioc
TitanCNA:Subclonal copy number and LOH prediction from whole genome sequencing of tumours
Hidden Markov model to segment and predict regions of subclonal copy number alterations (CNA) and loss of heterozygosity (LOH), and estimate cellular prevalence of clonal clusters in tumour whole genome sequencing data.
Maintained by Gavin Ha. Last updated 5 months ago.
sequencingwholegenomednaseqexomeseqstatisticalmethodcopynumbervariationhiddenmarkovmodelgeneticsgenomicvariationimmunooncology10x-genomicscopy-number-variationgenome-sequencinghmmtumor-heterogeneity
97 stars 8.47 score 68 scriptsbioc
igvR:igvR: integrative genomics viewer
Access to igv.js, the Integrative Genomics Viewer running in a web browser.
Maintained by Arkadiusz Gladki. Last updated 5 months ago.
visualizationthirdpartyclientgenomebrowsers
45 stars 8.33 score 118 scriptsbioc
csaw:ChIP-Seq Analysis with Windows
Detection of differentially bound regions in ChIP-seq data with sliding windows, with methods for normalization and proper FDR control.
Maintained by Aaron Lun. Last updated 2 months ago.
multiplecomparisonchipseqnormalizationsequencingcoveragegeneticsannotationdifferentialpeakcallingcurlbzip2xz-utilszlibcpp
8.32 score 498 scripts 7 dependentsbioc
GeneTonic:Enjoy Analyzing And Integrating The Results From Differential Expression Analysis And Functional Enrichment Analysis
This package provides functionality to combine the existing pieces of the transcriptome data and results, making it easier to generate insightful observations and hypothesis. Its usage is made easy with a Shiny application, combining the benefits of interactivity and reproducibility e.g. by capturing the features and gene sets of interest highlighted during the live session, and creating an HTML report as an artifact where text, code, and output coexist. Using the GeneTonicList as a standardized container for all the required components, it is possible to simplify the generation of multiple visualizations and summaries.
Maintained by Federico Marini. Last updated 3 months ago.
guigeneexpressionsoftwaretranscriptiontranscriptomicsvisualizationdifferentialexpressionpathwaysreportwritinggenesetenrichmentannotationgoshinyappsbioconductorbioconductor-packagedata-explorationdata-visualizationfunctional-enrichment-analysisgene-expressionpathway-analysisreproducible-researchrna-seq-analysisrna-seq-datashinytranscriptomeuser-friendly
77 stars 8.28 score 37 scripts 1 dependentsbioc
crisprDesign:Comprehensive design of CRISPR gRNAs for nucleases and base editors
Provides a comprehensive suite of functions to design and annotate CRISPR guide RNA (gRNAs) sequences. This includes on- and off-target search, on-target efficiency scoring, off-target scoring, full gene and TSS contextual annotations, and SNP annotation (human only). It currently support five types of CRISPR modalities (modes of perturbations): CRISPR knockout, CRISPR activation, CRISPR inhibition, CRISPR base editing, and CRISPR knockdown. All types of CRISPR nucleases are supported, including DNA- and RNA-target nucleases such as Cas9, Cas12a, and Cas13d. All types of base editors are also supported. gRNA design can be performed on reference genomes, transcriptomes, and custom DNA and RNA sequences. Both unpaired and paired gRNA designs are enabled.
Maintained by Jean-Philippe Fortin. Last updated 24 days ago.
crisprfunctionalgenomicsgenetargetbioconductorbioconductor-packagecrispr-cas9crispr-designcrispr-targetgenomics-analysisgrnagrna-sequencegrna-sequencessgrnasgrna-design
22 stars 8.28 score 80 scripts 3 dependentsbioc
nullranges:Generation of null ranges via bootstrapping or covariate matching
Modular package for generation of sets of ranges representing the null hypothesis. These can take the form of bootstrap samples of ranges (using the block bootstrap framework of Bickel et al 2010), or sets of control ranges that are matched across one or more covariates. nullranges is designed to be inter-operable with other packages for analysis of genomic overlap enrichment, including the plyranges Bioconductor package.
Maintained by Michael Love. Last updated 5 months ago.
visualizationgenesetenrichmentfunctionalgenomicsepigeneticsgeneregulationgenetargetgenomeannotationannotationgenomewideassociationhistonemodificationchipseqatacseqdnaseseqrnaseqhiddenmarkovmodelbioconductorbootstrapgenomicsmatchingstatistics
27 stars 8.16 score 50 scripts 1 dependentsbioc
motifmatchr:Fast Motif Matching in R
Quickly find motif matches for many motifs and many sequences. Wraps C++ code from the MOODS motif calling library, which was developed by Pasi Rastas, Janne Korhonen, and Petri Martinmäki.
Maintained by Alicia Schep. Last updated 5 months ago.
8.11 score 722 scripts 5 dependentsbioc
monaLisa:Binned Motif Enrichment Analysis and Visualization
Useful functions to work with sequence motifs in the analysis of genomics data. These include methods to annotate genomic regions or sequences with predicted motif hits and to identify motifs that drive observed changes in accessibility or expression. Functions to produce informative visualizations of the obtained results are also provided.
Maintained by Michael Stadler. Last updated 6 days ago.
motifannotationvisualizationfeatureextractionepigenetics
40 stars 8.10 score 53 scriptsbioc
biovizBase:Basic graphic utilities for visualization of genomic data.
The biovizBase package is designed to provide a set of utilities, color schemes and conventions for genomic data. It serves as the base for various high-level packages for biological data visualization. This saves development effort and encourages consistency.
Maintained by Michael Lawrence. Last updated 5 months ago.
infrastructurevisualizationpreprocessing
8.03 score 273 scripts 74 dependentsbioc
recount3:Explore and download data from the recount3 project
The recount3 package enables access to a large amount of uniformly processed RNA-seq data from human and mouse. You can download RangedSummarizedExperiment objects at the gene, exon or exon-exon junctions level with sample metadata and QC statistics. In addition we provide access to sample coverage BigWig files.
Maintained by Leonardo Collado-Torres. Last updated 4 months ago.
coveragedifferentialexpressiongeneexpressionrnaseqsequencingsoftwaredataimportannotation-agnosticbioconductorcountderfinderexongenehumanilluminajunctionmouserecountrecount3
33 stars 8.03 score 216 scriptsbioc
netZooR:Unified methods for the inference and analysis of gene regulatory networks
netZooR unifies the implementations of several Network Zoo methods (netzoo, netzoo.github.io) into a single package by creating interfaces between network inference and network analysis methods. Currently, the package has 3 methods for network inference including PANDA and its optimized implementation OTTER (network reconstruction using mutliple lines of biological evidence), LIONESS (single-sample network inference), and EGRET (genotype-specific networks). Network analysis methods include CONDOR (community detection), ALPACA (differential community detection), CRANE (significance estimation of differential modules), MONSTER (estimation of network transition states). In addition, YARN allows to process gene expresssion data for tissue-specific analyses and SAMBAR infers missing mutation data based on pathway information.
Maintained by Tara Eicher. Last updated 11 days ago.
networkinferencenetworkgeneregulationgeneexpressiontranscriptionmicroarraygraphandnetworkgene-regulatory-networktranscription-factors
105 stars 7.98 scorebioc
FLAMES:FLAMES: Full Length Analysis of Mutations and Splicing in long read RNA-seq data
Semi-supervised isoform detection and annotation from both bulk and single-cell long read RNA-seq data. Flames provides automated pipelines for analysing isoforms, as well as intermediate functions for manual execution.
Maintained by Changqing Wang. Last updated 19 days ago.
rnaseqsinglecelltranscriptomicsdataimportdifferentialsplicingalternativesplicinggeneexpressionlongreadzlibcurlbzip2xz-utilscpp
31 stars 7.95 score 12 scriptsbioc
motifStack:Plot stacked logos for single or multiple DNA, RNA and amino acid sequence
The motifStack package is designed for graphic representation of multiple motifs with different similarity scores. It works with both DNA/RNA sequence motif and amino acid sequence motif. In addition, it provides the flexibility for users to customize the graphic parameters such as the font type and symbol colors.
Maintained by Jianhong Ou. Last updated 3 months ago.
sequencematchingvisualizationsequencingmicroarrayalignmentchipchipchipseqmotifannotationdataimport
7.93 score 188 scripts 6 dependentsbioc
AneuFinder:Analysis of Copy Number Variation in Single-Cell-Sequencing Data
AneuFinder implements functions for copy-number detection, breakpoint detection, and karyotype and heterogeneity analysis in single-cell whole genome sequencing and strand-seq data.
Maintained by Aaron Taudt. Last updated 3 days ago.
immunooncologysoftwaresequencingsinglecellcopynumbervariationgenomicvariationhiddenmarkovmodelwholegenomecpp
18 stars 7.90 score 37 scriptsbioc
wateRmelon:Illumina DNA methylation array normalization and metrics
15 flavours of betas and three performance metrics, with methods for objects produced by methylumi and minfi packages.
Maintained by Leo C Schalkwyk. Last updated 4 months ago.
dnamethylationmicroarraytwochannelpreprocessingqualitycontrol
7.75 score 247 scripts 2 dependentsbioc
DEXSeq:Inference of differential exon usage in RNA-Seq
The package is focused on finding differential exon usage using RNA-seq exon counts between samples with different experimental designs. It provides functions that allows the user to make the necessary statistical tests based on a model that uses the negative binomial distribution to estimate the variance between biological replicates and generalized linear models for testing. The package also provides functions for the visualization and exploration of the results.
Maintained by Alejandro Reyes. Last updated 30 days ago.
immunooncologysequencingrnaseqdifferentialexpressionalternativesplicingdifferentialsplicinggeneexpressionvisualization
7.75 score 330 scripts 6 dependentsbioc
signeR:Empirical Bayesian approach to mutational signature discovery
The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.
Maintained by Renan Valieris. Last updated 5 months ago.
genomicvariationsomaticmutationstatisticalmethodvisualizationbioconductorbioinformaticsopenblascpp
13 stars 7.67 score 22 scriptsproteomicslab57357
UniprotR:Retrieving Information of Proteins from Uniprot
Connect to Uniprot <https://www.uniprot.org/> to retrieve information about proteins using their accession number such information could be name or taxonomy information, For detailed information kindly read the publication <https://www.sciencedirect.com/science/article/pii/S1874391919303859>.
Maintained by Mohamed Soudy. Last updated 3 years ago.
61 stars 7.65 score 89 scripts 1 dependentsbioc
MIRA:Methylation-Based Inference of Regulatory Activity
DNA methylation contains information about the regulatory state of the cell. MIRA aggregates genome-scale DNA methylation data into a DNA methylation profile for a given region set with shared biological annotation. Using this profile, MIRA infers and scores the collective regulatory activity for the region set. MIRA facilitates regulatory analysis in situations where classical regulatory assays would be difficult and allows public sources of region sets to be leveraged for novel insight into the regulatory state of DNA methylation datasets.
Maintained by John Lawson. Last updated 5 months ago.
immunooncologydnamethylationgeneregulationgenomeannotationsystemsbiologyfunctionalgenomicschipseqmethylseqsequencingepigeneticscoverage
12 stars 7.56 score 7 scripts 1 dependentsbioc
amplican:Automated analysis of CRISPR experiments
`amplican` performs alignment of the amplicon reads, normalizes gathered data, calculates multiple statistics (e.g. cut rates, frameshifts) and presents results in form of aggregated reports. Data and statistics can be broken down by experiments, barcodes, user defined groups, guides and amplicons allowing for quick identification of potential problems.
Maintained by Eivind Valen. Last updated 5 months ago.
immunooncologytechnologyalignmentqpcrcrisprcpp
10 stars 7.54 score 41 scriptsbioc
methrix:Fast and efficient summarization of generic bedGraph files from Bisufite sequencing
Bedgraph files generated by Bisulfite pipelines often come in various flavors. Critical downstream step requires summarization of these files into methylation/coverage matrices. This step of data aggregation is done by Methrix, including many other useful downstream functions.
Maintained by Anand Mayakonda. Last updated 5 months ago.
dnamethylationsequencingcoveragebedgraphbioinformaticsdna-methylation
32 stars 7.53 score 39 scripts 1 dependentsbioc
EpiCompare:Comparison, Benchmarking & QC of Epigenomic Datasets
EpiCompare is used to compare and analyse epigenetic datasets for quality control and benchmarking purposes. The package outputs an HTML report consisting of three sections: (1. General metrics) Metrics on peaks (percentage of blacklisted and non-standard peaks, and peak widths) and fragments (duplication rate) of samples, (2. Peak overlap) Percentage and statistical significance of overlapping and non-overlapping peaks. Also includes upset plot and (3. Functional annotation) functional annotation (ChromHMM, ChIPseeker and enrichment analysis) of peaks. Also includes peak enrichment around TSS.
Maintained by Hiranyamaya Dash. Last updated 1 months ago.
epigeneticsgeneticsqualitycontrolchipseqmultiplecomparisonfunctionalgenomicsatacseqdnaseseqbenchmarkbenchmarkingbioconductorbioconductor-packagecomparisonhtmlinteractive-reporting
15 stars 7.49 score 46 scriptsbioc
CAGEfightR:Analysis of Cap Analysis of Gene Expression (CAGE) data using Bioconductor
CAGE is a widely used high throughput assay for measuring transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor package for performing a wide range of common data analysis tasks for CAGE and 5'-end data in general. Core functionality includes: import of CAGE TSSs (CTSSs), tag (or unidirectional) clustering for TSS identification, bidirectional clustering for enhancer identification, annotation with transcript and gene models, correlation of TSS and enhancer expression, calculation of TSS shapes, quantification of CAGE expression as expression matrices and genome brower visualization.
Maintained by Malte Thodberg. Last updated 5 months ago.
softwaretranscriptioncoveragegeneexpressiongeneregulationpeakdetectiondataimportdatarepresentationtranscriptomicssequencingannotationgenomebrowsersnormalizationpreprocessingvisualization
8 stars 7.46 score 67 scripts 1 dependentsmyles-lewis
locuszoomr:Gene Locus Plot with Gene Annotations
Publication-ready regional gene locus plots similar to those produced by the web interface 'LocusZoom' <https://my.locuszoom.org>, but running locally in R. Genetic or genomic data with gene annotation tracks are plotted via R base graphics, 'ggplot2' or 'plotly', allowing flexibility and easy customisation including laying out multiple locus plots on the same page. It uses the 'LDlink' API <https://ldlink.nih.gov/?tab=apiaccess> to query linkage disequilibrium data from the 1000 Genomes Project and can overlay this on plots <doi:10.1093/bioadv/vbaf006>.
Maintained by Myles Lewis. Last updated 27 days ago.
40 stars 7.43 score 50 scriptsssnn-airr
shazam:Immunoglobulin Somatic Hypermutation Analysis
Provides a computational framework for analyzing mutations in immunoglobulin (Ig) sequences. Includes methods for Bayesian estimation of antigen-driven selection pressure, mutational load quantification, building of somatic hypermutation (SHM) models, and model-dependent distance calculations. Also includes empirically derived models of SHM for both mice and humans. Citations: Gupta and Vander Heiden, et al (2015) <doi:10.1093/bioinformatics/btv359>, Yaari, et al (2012) <doi:10.1093/nar/gks457>, Yaari, et al (2013) <doi:10.3389/fimmu.2013.00358>, Cui, et al (2016) <doi:10.4049/jimmunol.1502263>.
Maintained by Susanna Marquez. Last updated 3 months ago.
7.43 score 222 scripts 2 dependentsbioc
glmSparseNet:Network Centrality Metrics for Elastic-Net Regularized Models
glmSparseNet is an R-package that generalizes sparse regression models when the features (e.g. genes) have a graph structure (e.g. protein-protein interactions), by including network-based regularizers. glmSparseNet uses the glmnet R-package, by including centrality measures of the network as penalty weights in the regularization. The current version implements regularization based on node degree, i.e. the strength and/or number of its associated edges, either by promoting hubs in the solution or orphan genes in the solution. All the glmnet distribution families are supported, namely "gaussian", "poisson", "binomial", "multinomial", "cox", and "mgaussian".
Maintained by André Veríssimo. Last updated 5 months ago.
softwarestatisticalmethoddimensionreductionregressionclassificationsurvivalnetworkgraphandnetwork
6 stars 7.42 score 41 scripts 1 dependentsbioc
ELMER:Inferring Regulatory Element Landscapes and Transcription Factor Networks Using Cancer Methylomes
ELMER is designed to use DNA methylation and gene expression from a large number of samples to infere regulatory element landscape and transcription factor network in primary tissue.
Maintained by Tiago Chedraoui Silva. Last updated 5 months ago.
dnamethylationgeneexpressionmotifannotationsoftwaregeneregulationtranscriptionnetwork
7.42 score 176 scriptsbioc
MOSim:Multi-Omics Simulation (MOSim)
MOSim package simulates multi-omic experiments that mimic regulatory mechanisms within the cell, allowing flexible experimental design including time course and multiple groups.
Maintained by Sonia Tarazona. Last updated 5 months ago.
softwaretimecourseexperimentaldesignrnaseqcpp
9 stars 7.42 score 11 scriptsbioc
methylSig:MethylSig: Differential Methylation Testing for WGBS and RRBS Data
MethylSig is a package for testing for differentially methylated cytosines (DMCs) or regions (DMRs) in whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing (RRBS) experiments. MethylSig uses a beta binomial model to test for significant differences between groups of samples. Several options exist for either site-specific or sliding window tests, and variance estimation.
Maintained by Raymond G. Cavalcante. Last updated 5 months ago.
dnamethylationdifferentialmethylationepigeneticsregressionmethylseqdifferential-methylationdna-methylation
18 stars 7.40 score 23 scriptsbioc
standR:Spatial transcriptome analyses of Nanostring's DSP data in R
standR is an user-friendly R package providing functions to assist conducting good-practice analysis of Nanostring's GeoMX DSP data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. standR allows data inspection, quality control, normalization, batch correction and evaluation with informative visualizations.
Maintained by Ning Liu. Last updated 2 months ago.
spatialtranscriptomicsgeneexpressiondifferentialexpressionqualitycontrolnormalizationexperimenthubsoftware
18 stars 7.39 score 45 scriptsbioc
shinyMethyl:Interactive visualization for Illumina methylation arrays
Interactive tool for visualizing Illumina methylation array data. Both the 450k and EPIC array are supported.
Maintained by Jean-Philippe Fortin. Last updated 5 months ago.
dnamethylationmicroarraytwochannelpreprocessingqualitycontrolmethylationarray
5 stars 7.34 score 42 scriptsbioc
chromVAR:Chromatin Variation Across Regions
Determine variation in chromatin accessibility across sets of annotations or peaks. Designed primarily for single-cell or sparse chromatin accessibility data, e.g. from scATAC-seq or sparse bulk ATAC or DNAse-seq experiments.
Maintained by Alicia Schep. Last updated 5 months ago.
singlecellsequencinggeneregulationimmunooncologycpp
7.31 score 772 scriptsbioc
OrganismDbi:Software to enable the smooth interfacing of different database packages
The package enables a simple unified interface to several annotation packages each of which has its own schema by taking advantage of the fact that each of these packages implements a select methods.
Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.
7.26 score 34 scripts 34 dependentsbioc
missMethyl:Analysing Illumina HumanMethylation BeadChip Data
Normalisation, testing for differential variability and differential methylation and gene set testing for data from Illumina's Infinium HumanMethylation arrays. The normalisation procedure is subset-quantile within-array normalisation (SWAN), which allows Infinium I and II type probes on a single array to be normalised together. The test for differential variability is based on an empirical Bayes version of Levene's test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes.
Maintained by Belinda Phipson. Last updated 27 days ago.
normalizationdnamethylationmethylationarraygenomicvariationgeneticvariabilitydifferentialmethylationgenesetenrichment
7.24 score 300 scripts 1 dependentsbioc
regionReport:Generate HTML or PDF reports for a set of genomic regions or DESeq2/edgeR results
Generate HTML or PDF reports to explore a set of regions such as the results from annotation-agnostic expression analysis of RNA-seq data at base-pair resolution performed by derfinder. You can also create reports for DESeq2 or edgeR results.
Maintained by Leonardo Collado-Torres. Last updated 2 months ago.
differentialexpressionsequencingrnaseqsoftwarevisualizationtranscriptioncoveragereportwritingdifferentialmethylationdifferentialpeakcallingimmunooncologyqualitycontrolbioconductorderfinderdeseq2edgerregionreportrmarkdown
9 stars 7.22 score 46 scriptsbioc
CRISPRseek:Design of guide RNAs in CRISPR genome-editing systems
The package encompasses functions to find potential guide RNAs for the CRISPR-based genome-editing systems including the Base Editors and the Prime Editors when supplied with target sequences as input. Users have the flexibility to filter resulting guide RNAs based on parameters such as the absence of restriction enzyme cut sites or the lack of paired guide RNAs. The package also facilitates genome-wide exploration for off-targets, offering features to score and rank off-targets, retrieve flanking sequences, and indicate whether the hits are located within exon regions. All detected guide RNAs are annotated with the cumulative scores of the top5 and topN off-targets together with the detailed information such as mismatch sites and restrictuion enzyme cut sites. The package also outputs INDELs and their frequencies for Cas9 targeted sites.
Maintained by Lihua Julie Zhu. Last updated 19 days ago.
immunooncologygeneregulationsequencematchingcrispr
7.18 score 51 scripts 2 dependentsbioc
DiffBind:Differential Binding Analysis of ChIP-Seq Peak Data
Compute differentially bound sites from multiple ChIP-seq experiments using affinity (quantitative) data. Also enables occupancy (overlap) analysis and plotting functions.
Maintained by Rory Stark. Last updated 2 months ago.
sequencingchipseqatacseqdnaseseqmethylseqripseqdifferentialpeakcallingdifferentialmethylationgeneregulationhistonemodificationpeakdetectionbiomedicalinformaticscellbiologymultiplecomparisonnormalizationreportwritingepigeneticsfunctionalgenomicscurlbzip2xz-utilszlibcpp
7.13 score 512 scripts 2 dependentsbioc
ATACseqQC:ATAC-seq Quality Control
ATAC-seq, an assay for Transposase-Accessible Chromatin using sequencing, is a rapid and sensitive method for chromatin accessibility analysis. It was developed as an alternative method to MNase-seq, FAIRE-seq and DNAse-seq. Comparing to the other methods, ATAC-seq requires less amount of the biological samples and time to process. In the process of analyzing several ATAC-seq dataset produced in our labs, we learned some of the unique aspects of the quality assessment for ATAC-seq data.To help users to quickly assess whether their ATAC-seq experiment is successful, we developed ATACseqQC package partially following the guideline published in Nature Method 2013 (Greenleaf et al.), including diagnostic plot of fragment size distribution, proportion of mitochondria reads, nucleosome positioning pattern, and CTCF or other Transcript Factor footprints.
Maintained by Jianhong Ou. Last updated 3 months ago.
sequencingdnaseqatacseqgeneregulationqualitycontrolcoveragenucleosomepositioningimmunooncology
7.12 score 146 scripts 1 dependentsbioc
RiboCrypt:Interactive visualization in genomics
R Package for interactive visualization and browsing NGS data. It contains a browser for both transcript and genomic coordinate view. In addition a QC and general metaplots are included, among others differential translation plots and gene expression plots. The package is still under development.
Maintained by Michal Swirski. Last updated 2 days ago.
softwaresequencingriboseqrnaseq
5 stars 7.08 score 22 scriptsbioc
cardelino:Clone Identification from Single Cell Data
Methods to infer clonal tree configuration for a population of cells using single-cell RNA-seq data (scRNA-seq), and possibly other data modalities. Methods are also provided to assign cells to inferred clones and explore differences in gene expression between clones. These methods can flexibly integrate information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. A flexible beta-binomial error model that accounts for stochastic dropout events as well as systematic allelic imbalance is used.
Maintained by Davis McCarthy. Last updated 5 months ago.
singlecellrnaseqvisualizationtranscriptomicsgeneexpressionsequencingsoftwareexomeseqclonal-clusteringgibbs-samplingscrna-seqsingle-cellsomatic-mutations
61 stars 7.05 score 62 scriptsbioc
ACE:Absolute Copy Number Estimation from Low-coverage Whole Genome Sequencing
Uses segmented copy number data to estimate tumor cell percentage and produce copy number plots displaying absolute copy numbers.
Maintained by Jos B Poell. Last updated 5 months ago.
copynumbervariationdnaseqcoveragewholegenomevisualizationsequencing
15 stars 7.03 score 18 scriptsbioc
DSS:Dispersion shrinkage for sequencing data
DSS is an R library performing differntial analysis for count-based sequencing data. It detectes differentially expressed genes (DEGs) from RNA-seq, and differentially methylated loci or regions (DML/DMRs) from bisulfite sequencing (BS-seq). The core of DSS is a new dispersion shrinkage method for estimating the dispersion parameter from Gamma-Poisson or Beta-Binomial distributions.
Maintained by Hao Wu. Last updated 5 months ago.
sequencingrnaseqdnamethylationgeneexpressiondifferentialexpressiondifferentialmethylation
7.02 score 248 scripts 5 dependentsbioc
COCOA:Coordinate Covariation Analysis
COCOA is a method for understanding epigenetic variation among samples. COCOA can be used with epigenetic data that includes genomic coordinates and an epigenetic signal, such as DNA methylation and chromatin accessibility data. To describe the method on a high level, COCOA quantifies inter-sample variation with either a supervised or unsupervised technique then uses a database of "region sets" to annotate the variation among samples. A region set is a set of genomic regions that share a biological annotation, for instance transcription factor (TF) binding regions, histone modification regions, or open chromatin regions. COCOA can identify region sets that are associated with epigenetic variation between samples and increase understanding of variation in your data.
Maintained by John Lawson. Last updated 5 months ago.
epigeneticsdnamethylationatacseqdnaseseqmethylseqmethylationarrayprincipalcomponentgenomicvariationgeneregulationgenomeannotationsystemsbiologyfunctionalgenomicschipseqsequencingimmunooncologydna-methylationpca
10 stars 7.02 score 21 scriptsbioc
mygene:Access MyGene.Info_ services
MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. *mygene*, is an easy-to-use R wrapper to access MyGene.Info_ services.
Maintained by Adam Mark, Cyrus Afrasiabi, Chunlei Wu. Last updated 5 months ago.
7.00 score 330 scripts 1 dependentsbioc
musicatk:Mutational Signature Comprehensive Analysis Toolkit
Mutational signatures are carcinogenic exposures or aberrant cellular processes that can cause alterations to the genome. We created musicatk (MUtational SIgnature Comprehensive Analysis ToolKit) to address shortcomings in versatility and ease of use in other pre-existing computational tools. Although many different types of mutational data have been generated, current software packages do not have a flexible framework to allow users to mix and match different types of mutations in the mutational signature inference process. Musicatk enables users to count and combine multiple mutation types, including SBS, DBS, and indels. Musicatk calculates replication strand, transcription strand and combinations of these features along with discovery from unique and proprietary genomic feature associated with any mutation type. Musicatk also implements several methods for discovery of new signatures as well as methods to infer exposure given an existing set of signatures. Musicatk provides functions for visualization and downstream exploratory analysis including the ability to compare signatures between cohorts and find matching signatures in COSMIC V2 or COSMIC V3.
Maintained by Joshua D. Campbell. Last updated 5 months ago.
softwarebiologicalquestionsomaticmutationvariantannotation
13 stars 6.97 score 20 scriptsbioc
NanoMethViz:Visualise methylation data from Oxford Nanopore sequencing
NanoMethViz is a toolkit for visualising methylation data from Oxford Nanopore sequencing. It can be used to explore methylation patterns from reads derived from Oxford Nanopore direct DNA sequencing with methylation called by callers including nanopolish, f5c and megalodon. The plots in this package allow the visualisation of methylation profiles aggregated over experimental groups and across classes of genomic features.
Maintained by Shian Su. Last updated 20 days ago.
softwarelongreadvisualizationdifferentialmethylationdnamethylationepigeneticsdataimportzlibcpp
26 stars 6.95 score 11 scriptsbioc
psichomics:Graphical Interface for Alternative Splicing Quantification, Analysis and Visualisation
Interactive R package with an intuitive Shiny-based graphical interface for alternative splicing quantification and integrative analyses of alternative splicing and gene expression based on The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression project (GTEx), Sequence Read Archive (SRA) and user-provided data. The tool interactively performs survival, dimensionality reduction and median- and variance-based differential splicing and gene expression analyses that benefit from the incorporation of clinical and molecular sample-associated features (such as tumour stage or survival). Interactive visual access to genomic mapping and functional annotation of selected alternative splicing events is also included.
Maintained by Nuno Saraiva-Agostinho. Last updated 5 months ago.
sequencingrnaseqalternativesplicingdifferentialsplicingtranscriptionguiprincipalcomponentsurvivalbiomedicalinformaticstranscriptomicsimmunooncologyvisualizationmultiplecomparisongeneexpressiondifferentialexpressionalternative-splicingbioconductordata-analysesdifferential-gene-expressiondifferential-splicing-analysisgene-expressiongtexrecount2rna-seq-datasplicing-quantificationsratcgavast-toolscpp
36 stars 6.95 score 31 scriptsbioc
Organism.dplyr:dplyr-based Access to Bioconductor Annotation Resources
This package provides an alternative interface to Bioconductor 'annotation' resources, in particular the gene identifier mapping functionality of the 'org' packages (e.g., org.Hs.eg.db) and the genome coordinate functionality of the 'TxDb' packages (e.g., TxDb.Hsapiens.UCSC.hg38.knownGene).
Maintained by Martin Morgan. Last updated 8 days ago.
annotationsequencinggenomeannotationbioconductor-packagecore-package
3 stars 6.90 score 63 scripts 1 dependentsbioc
MotifDb:An Annotated Collection of Protein-DNA Binding Sequence Motifs
More than 9900 annotated position frequency matrices from 14 public sources, for multiple organisms.
Maintained by Paul Shannon. Last updated 17 days ago.
6.86 score 404 scripts 2 dependentsbioc
GenomicFiles:Distributed computing by file or by range
This package provides infrastructure for parallel computations distributed 'by file' or 'by range'. User defined MAPPER and REDUCER functions provide added flexibility for data combination and manipulation.
Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.
geneticsinfrastructuredataimportsequencingcoverage
6.86 score 89 scripts 16 dependentsbioc
SomaticSignatures:Somatic Signatures
The SomaticSignatures package identifies mutational signatures of single nucleotide variants (SNVs). It provides a infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms.
Maintained by Julian Gehring. Last updated 5 months ago.
sequencingsomaticmutationvisualizationclusteringgenomicvariationstatisticalmethod
22 stars 6.85 score 54 scripts 1 dependentsbioc
RnBeads:RnBeads
RnBeads facilitates comprehensive analysis of various types of DNA methylation data at the genome scale.
Maintained by Fabian Mueller. Last updated 2 months ago.
dnamethylationmethylationarraymethylseqepigeneticsqualitycontrolpreprocessingbatcheffectdifferentialmethylationsequencingcpgislandimmunooncologytwochanneldataimport
6.85 score 169 scripts 1 dependentskbhoehn
dowser:B Cell Receptor Phylogenetics Toolkit
Provides a set of functions for inferring, visualizing, and analyzing B cell phylogenetic trees. Provides methods to 1) reconstruct unmutated ancestral sequences, 2) build B cell phylogenetic trees using multiple methods, 3) visualize trees with metadata at the tips, 4) reconstruct intermediate sequences, 5) detect biased ancestor-descendant relationships among metadata types Workflow examples available at documentation site (see URL). Citations: Hoehn et al (2022) <doi:10.1371/journal.pcbi.1009885>, Hoehn et al (2021) <doi:10.1101/2021.01.06.425648>.
Maintained by Kenneth Hoehn. Last updated 2 months ago.
6.81 score 84 scriptsjunjunlab
ClusterGVis:One-Step to Cluster and Visualize Gene Expression Data
Streamlining the clustering and visualization of time-series gene expression data from RNA-Seq experiments, this tool supports fuzzy c-means and k-means clustering algorithms. It is compatible with outputs from widely-used packages such as 'Seurat', 'Monocle', and 'WGCNA', enabling seamless downstream visualization and analysis. See Lokesh Kumar and Matthias E Futschik (2007) <doi:10.6026/97320630002005> for more details.
Maintained by Jun Zhang. Last updated 20 days ago.
sequencingclusterprofilersummarizedexperimentmfuzzcomplexheatmapgene-clusteringgene-expressionvisualization
281 stars 6.80 score 30 scriptsbioc
ideal:Interactive Differential Expression AnaLysis
This package provides functions for an Interactive Differential Expression AnaLysis of RNA-sequencing datasets, to extract quickly and effectively information downstream the step of differential expression. A Shiny application encapsulates the whole package. Support for reproducibility of the whole analysis is provided by means of a template report which gets automatically compiled and can be stored/shared.
Maintained by Federico Marini. Last updated 3 months ago.
immunooncologygeneexpressiondifferentialexpressionrnaseqsequencingvisualizationqualitycontrolguigenesetenrichmentreportwritingshinyappsbioconductordifferential-expressionreproducible-researchrna-seqrna-seq-analysisshinyuser-friendly
29 stars 6.78 score 5 scriptsbioc
maser:Mapping Alternative Splicing Events to pRoteins
This package provides functionalities for downstream analysis, annotation and visualizaton of alternative splicing events generated by rMATS.
Maintained by Diogo F.T. Veiga. Last updated 5 months ago.
alternativesplicingtranscriptomicsvisualization
17 stars 6.74 score 18 scriptsbioc
chimeraviz:Visualization tools for gene fusions
chimeraviz manages data from fusion gene finders and provides useful visualization tools.
Maintained by Stian Lågstad. Last updated 5 months ago.
37 stars 6.71 score 14 scriptsbioc
syntenet:Inference And Analysis Of Synteny Networks
syntenet can be used to infer synteny networks from whole-genome protein sequences and analyze them. Anchor pairs are detected with the MCScanX algorithm, which was ported to this package with the Rcpp framework for R and C++ integration. Anchor pairs from synteny analyses are treated as an undirected unweighted graph (i.e., a synteny network), and users can perform: i. network clustering; ii. phylogenomic profiling (by identifying which species contain which clusters) and; iii. microsynteny-based phylogeny reconstruction with maximum likelihood.
Maintained by Fabrício Almeida-Silva. Last updated 3 months ago.
softwarenetworkinferencefunctionalgenomicscomparativegenomicsphylogeneticssystemsbiologygraphandnetworkwholegenomenetworkcomparative-genomicsevolutionary-genomicsnetwork-sciencephylogenomicssyntenysynteny-networkcpp
28 stars 6.70 score 12 scripts 1 dependentsbioc
extraChIPs:Additional functions for working with ChIP-Seq data
This package builds on existing tools and adds some simple but extremely useful capabilities for working wth ChIP-Seq data. The focus is on detecting differential binding windows/regions. One set of functions focusses on set-operations retaining mcols for GRanges objects, whilst another group of functions are to aid visualisation of results. Coercion to tibble objects is also implemented.
Maintained by Stevie Pederson. Last updated 29 days ago.
7 stars 6.67 score 25 scriptsbioc
epiregulon:Gene regulatory network inference from single cell epigenomic data
Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions.
Maintained by Xiaosai Yao. Last updated 20 days ago.
singlecellgeneregulationnetworkinferencenetworkgeneexpressiontranscriptiongenetargetcpp
14 stars 6.67 score 17 scriptsbioc
proActiv:Estimate Promoter Activity from RNA-Seq data
Most human genes have multiple promoters that control the expression of different isoforms. The use of these alternative promoters enables the regulation of isoform expression pre-transcriptionally. Alternative promoters have been found to be important in a wide number of cell types and diseases. proActiv is an R package that enables the analysis of promoters from RNA-seq data. proActiv uses aligned reads as input, and generates counts and normalized promoter activity estimates for each annotated promoter. In particular, proActiv accepts junction files from TopHat2 or STAR or BAM files as inputs. These estimates can then be used to identify which promoter is active, which promoter is inactive, and which promoters change their activity across conditions. proActiv also allows visualization of promoter activity across conditions.
Maintained by Joseph Lee. Last updated 5 months ago.
rnaseqgeneexpressiontranscriptionalternativesplicinggeneregulationdifferentialsplicingfunctionalgenomicsepigeneticstranscriptomicspreprocessingalternative-promotersgenomicspromoter-activitypromoter-annotationrna-seq-data
51 stars 6.66 score 15 scriptsbioc
deepSNV:Detection of subclonal SNVs in deep sequencing data.
This package provides provides quantitative variant callers for detecting subclonal mutations in ultra-deep (>=100x coverage) sequencing experiments. The deepSNV algorithm is used for a comparative setup with a control experiment of the same loci and uses a beta-binomial model and a likelihood ratio test to discriminate sequencing errors and subclonal SNVs. The shearwater algorithm computes a Bayes classifier based on a beta-binomial model for variant calling with multiple samples for precisely estimating model parameters - such as local error rates and dispersion - and prior knowledge, e.g. from variation data bases such as COSMIC.
Maintained by Moritz Gerstung. Last updated 5 months ago.
geneticvariabilitysnpsequencinggeneticsdataimportcurlbzip2xz-utilszlibcpp
6.53 score 38 scripts 1 dependentsbioc
ChAMP:Chip Analysis Methylation Pipeline for Illumina HumanMethylation450 and EPIC
The package includes quality control metrics, a selection of normalization methods and novel methods to identify differentially methylated regions and to highlight copy number alterations.
Maintained by Yuan Tian. Last updated 5 months ago.
microarraymethylationarraynormalizationtwochannelcopynumberdnamethylation
6.50 score 278 scriptshuanglabumn
oncoPredict:Drug Response Modeling and Biomarker Discovery
Allows for building drug response models using screening data between bulk RNA-Seq and a drug response metric and two additional tools for biomarker discovery that have been developed by the Huang Laboratory at University of Minnesota. There are 3 main functions within this package. (1) calcPhenotype is used to build drug response models on RNA-Seq data and impute them on any other RNA-Seq dataset given to the model. (2) GLDS is used to calculate the general level of drug sensitivity, which can improve biomarker discovery. (3) IDWAS can take the results from calcPhenotype and link the imputed response back to available genomic (mutation and CNV alterations) to identify biomarkers. Each of these functions comes from a paper from the Huang research laboratory. Below gives the relevant paper for each function. calcPhenotype - Geeleher et al, Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. GLDS - Geeleher et al, Cancer biomarker discovery is improved by accounting for variability in general levels of drug sensitivity in pre-clinical models. IDWAS - Geeleher et al, Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies.
Maintained by Robert Gruener. Last updated 12 months ago.
svapreprocesscorestringrbiomartgenefilterorg.hs.eg.dbgenomicfeaturestxdb.hsapiens.ucsc.hg19.knowngenetcgabiolinksbiocgenericsgenomicrangesirangess4vectors
18 stars 6.47 score 41 scriptsbioc
coMethDMR:Accurate identification of co-methylated and differentially methylated regions in epigenome-wide association studies
coMethDMR identifies genomic regions associated with continuous phenotypes by optimally leverages covariations among CpGs within predefined genomic regions. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first without using any outcome information. Next, coMethDMR tests association between methylation within the sub-region and continuous phenotype using a random coefficient mixed effects model, which models both variations between CpG sites within the region and differential methylation simultaneously.
Maintained by Fernanda Veitzman. Last updated 5 months ago.
dnamethylationepigeneticsmethylationarraydifferentialmethylationgenomewideassociation
7 stars 6.47 score 42 scriptsbioc
SingleMoleculeFootprinting:Analysis tools for Single Molecule Footprinting (SMF) data
SingleMoleculeFootprinting provides functions to analyze Single Molecule Footprinting (SMF) data. Following the workflow exemplified in its vignette, the user will be able to perform basic data analysis of SMF data with minimal coding effort. Starting from an aligned bam file, we show how to perform quality controls over sequencing libraries, extract methylation information at the single molecule level accounting for the two possible kind of SMF experiments (single enzyme or double enzyme), classify single molecules based on their patterns of molecular occupancy, plot SMF information at a given genomic location.
Maintained by Guido Barzaghi. Last updated 4 days ago.
dnamethylationcoveragenucleosomepositioningdatarepresentationepigeneticsmethylseqqualitycontrolsequencing
2 stars 6.46 score 27 scriptsadrientaudiere
MiscMetabar:Miscellaneous Functions for Metabarcoding Analysis
Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. 'MiscMetabar' is mainly built on top of the 'phyloseq', 'dada2' and 'targets' R packages. It helps to build reproducible and robust bioinformatics pipelines in R. 'MiscMetabar' makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.
Maintained by Adrien Taudière. Last updated 9 days ago.
sequencingmicrobiomemetagenomicsclusteringclassificationvisualizationampliconamplicon-sequencingbiodiversity-informaticsecologyilluminametabarcodingngs-analysis
17 stars 6.44 score 23 scriptsbioc
doubletrouble:Identification and classification of duplicated genes
doubletrouble aims to identify duplicated genes from whole-genome protein sequences and classify them based on their modes of duplication. The duplication modes are i. segmental duplication (SD); ii. tandem duplication (TD); iii. proximal duplication (PD); iv. transposed duplication (TRD) and; v. dispersed duplication (DD). Transposon-derived duplicates (TRD) can be further subdivided into rTRD (retrotransposon-derived duplication) and dTRD (DNA transposon-derived duplication). If users want a simpler classification scheme, duplicates can also be classified into SD- and SSD-derived (small-scale duplication) gene pairs. Besides classifying gene pairs, users can also classify genes, so that each gene is assigned a unique mode of duplication. Users can also calculate substitution rates per substitution site (i.e., Ka and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian Mixture Models (GMMs), and classify gene pairs into age groups based on Ks peaks.
Maintained by Fabrício Almeida-Silva. Last updated 17 days ago.
softwarewholegenomecomparativegenomicsfunctionalgenomicsphylogeneticsnetworkclassificationbioinformaticscomparative-genomicsgene-duplicationmolecular-evolutionwhole-genome-duplication
23 stars 6.44 score 17 scriptsbioc
gwasurvivr:gwasurvivr: an R package for genome wide survival analysis
gwasurvivr is a package to perform survival analysis using Cox proportional hazard models on imputed genetic data.
Maintained by Abbas Rizvi. Last updated 5 months ago.
genomewideassociationsurvivalregressiongeneticssnpgeneticvariabilitypharmacogenomicsbiomedicalinformatics
12 stars 6.43 score 75 scriptsbioc
PICS:Probabilistic inference of ChIP-seq
Probabilistic inference of ChIP-Seq using an empirical Bayes mixture model approach.
Maintained by Renan Sauteraud. Last updated 3 days ago.
clusteringvisualizationsequencingchipseqgsl
6.43 score 7 scripts 1 dependentsbioc
SparseSignatures:SparseSignatures
Point mutations occurring in a genome can be divided into 96 categories based on the base being mutated, the base it is mutated into and its two flanking bases. Therefore, for any patient, it is possible to represent all the point mutations occurring in that patient's tumor as a vector of length 96, where each element represents the count of mutations for a given category in the patient. A mutational signature represents the pattern of mutations produced by a mutagen or mutagenic process inside the cell. Each signature can also be represented by a vector of length 96, where each element represents the probability that this particular mutagenic process generates a mutation of the 96 above mentioned categories. In this R package, we provide a set of functions to extract and visualize the mutational signatures that best explain the mutation counts of a large number of patients.
Maintained by Luca De Sano. Last updated 4 days ago.
biomedicalinformaticssomaticmutation
11 stars 6.42 score 4 scriptsbioc
Moonlight2R:Identify oncogenes and tumor suppressor genes from omics data
The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.
Maintained by Matteo Tiberti. Last updated 2 months ago.
dnamethylationdifferentialmethylationgeneregulationgeneexpressionmethylationarraydifferentialexpressionpathwaysnetworksurvivalgenesetenrichmentnetworkenrichment
5 stars 6.41 score 43 scriptsbioc
YAPSA:Yet Another Package for Signature Analysis
This package provides functions and routines for supervised analyses of mutational signatures (i.e., the signatures have to be known, cf. L. Alexandrov et al., Nature 2013 and L. Alexandrov et al., Bioaxiv 2018). In particular, the family of functions LCD (LCD = linear combination decomposition) can use optimal signature-specific cutoffs which takes care of different detectability of the different signatures. Moreover, the package provides different sets of mutational signatures, including the COSMIC and PCAWG SNV signatures and the PCAWG Indel signatures; the latter infering that with YAPSA, the concept of supervised analysis of mutational signatures is extended to Indel signatures. YAPSA also provides confidence intervals as computed by profile likelihoods and can perform signature analysis on a stratified mutational catalogue (SMC = stratify mutational catalogue) in order to analyze enrichment and depletion patterns for the signatures in different strata.
Maintained by Zuguang Gu. Last updated 5 months ago.
sequencingdnaseqsomaticmutationvisualizationclusteringgenomicvariationstatisticalmethodbiologicalquestion
6.41 score 57 scriptsbioc
SpliceWiz:interactive analysis and visualization of alternative splicing in R
The analysis and visualization of alternative splicing (AS) events from RNA sequencing data remains challenging. SpliceWiz is a user-friendly and performance-optimized R package for AS analysis, by processing alignment BAM files to quantify read counts across splice junctions, IRFinder-based intron retention quantitation, and supports novel splicing event identification. We introduce a novel visualization for AS using normalized coverage, thereby allowing visualization of differential AS across conditions. SpliceWiz features a shiny-based GUI facilitating interactive data exploration of results including gene ontology enrichment. It is performance optimized with multi-threaded processing of BAM files and a new COV file format for fast recall of sequencing coverage. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization.
Maintained by Alex Chit Hei Wong. Last updated 17 days ago.
softwaretranscriptomicsrnaseqalternativesplicingcoveragedifferentialsplicingdifferentialexpressionguisequencingcppopenmp
16 stars 6.41 score 8 scriptsbioc
quantro:A test for when to use quantile normalization
A data-driven test for the assumptions of quantile normalization using raw data such as objects that inherit eSets (e.g. ExpressionSet, MethylSet). Group level information about each sample (such as Tumor / Normal status) must also be provided because the test assesses if there are global differences in the distributions between the user-defined groups.
Maintained by Stephanie Hicks. Last updated 5 months ago.
normalizationpreprocessingmultiplecomparisonmicroarraysequencing
6.40 score 69 scripts 2 dependentsbioc
dmrseq:Detection and inference of differentially methylated regions from Whole Genome Bisulfite Sequencing
This package implements an approach for scanning the genome to detect and perform accurate inference on differentially methylated regions from Whole Genome Bisulfite Sequencing data. The method is based on comparing detected regions to a pooled null distribution, that can be implemented even when as few as two samples per population are available. Region-level statistics are obtained by fitting a generalized least squares (GLS) regression model with a nested autoregressive correlated error structure for the effect of interest on transformed methylation proportions.
Maintained by Keegan Korthauer. Last updated 5 months ago.
immunooncologydnamethylationepigeneticsmultiplecomparisonsoftwaresequencingdifferentialmethylationwholegenomeregressionfunctionalgenomics
6.39 score 59 scripts 1 dependentsbioc
RNAmodR:Detection of post-transcriptional modifications in high throughput sequencing data
RNAmodR provides classes and workflows for loading/aggregation data from high througput sequencing aimed at detecting post-transcriptional modifications through analysis of specific patterns. In addition, utilities are provided to validate and visualize the results. The RNAmodR package provides a core functionality from which specific analysis strategies can be easily implemented as a seperate package.
Maintained by Felix G.M. Ernst. Last updated 5 months ago.
softwareinfrastructureworkflowstepvisualizationsequencingalkanilineseqbioconductormodificationsribomethseqrnarnamodr
3 stars 6.39 score 9 scripts 3 dependentsbioc
chipseq:chipseq: A package for analyzing chipseq data
Tools for helping process short read data for chipseq experiments.
Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.
chipseqsequencingcoveragequalitycontroldataimport
6.35 score 91 scripts 4 dependentsbioc
gwascat:representing and modeling data in the EMBL-EBI GWAS catalog
Represent and model data in the EMBL-EBI GWAS catalog.
Maintained by VJ Carey. Last updated 2 days ago.
6.35 score 110 scripts 2 dependentsbioc
RCAS:RNA Centric Annotation System
RCAS is an R/Bioconductor package designed as a generic reporting tool for the functional analysis of transcriptome-wide regions of interest detected by high-throughput experiments. Such transcriptomic regions could be, for instance, signal peaks detected by CLIP-Seq analysis for protein-RNA interaction sites, RNA modification sites (alias the epitranscriptome), CAGE-tag locations, or any other collection of query regions at the level of the transcriptome. RCAS produces in-depth annotation summaries and coverage profiles based on the distribution of the query regions with respect to transcript features (exons, introns, 5'/3' UTR regions, exon-intron boundaries, promoter regions). Moreover, RCAS can carry out functional enrichment analyses and discriminative motif discovery.
Maintained by Bora Uyar. Last updated 5 months ago.
softwaregenetargetmotifannotationmotifdiscoverygotranscriptomicsgenomeannotationgenesetenrichmentcoverage
6.32 score 29 scripts 1 dependentsegeulgen
driveR:Prioritizing Cancer Driver Genes Using Genomics Data
Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. 'driveR' is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, 'driveR' uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, 'phenolyzer' gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR: driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.
Maintained by Ege Ulgen. Last updated 2 years ago.
cancer-drivernessdriverdriver-gene-prioritizationidentify-driver-genesranking-genesscoring
15 stars 6.29 score 260 scriptsbioc
recountmethylation:Access and analyze public DNA methylation array data compilations
Resources for cross-study analyses of public DNAm array data from NCBI GEO repo, produced using Illumina's Infinium HumanMethylation450K (HM450K) and MethylationEPIC (EPIC) platforms. Provided functions enable download, summary, and filtering of large compilation files. Vignettes detail background about file formats, example analyses, and more. Note the disclaimer on package load and consult the main manuscripts for further info.
Maintained by Sean K Maden. Last updated 5 months ago.
dnamethylationepigeneticsmicroarraymethylationarrayexperimenthub
9 stars 6.28 score 9 scriptsbioc
signifinder:Collection and implementation of public transcriptional cancer signatures
signifinder is an R package for computing and exploring a compendium of tumor signatures. It allows to compute a variety of signatures, based on gene expression values, and return single-sample scores. Currently, signifinder contains more than 60 distinct signatures collected from the literature, relating to multiple tumors and multiple cancer processes.
Maintained by Stefania Pirrotta. Last updated 3 months ago.
geneexpressiongenetargetimmunooncologybiomedicalinformaticsrnaseqmicroarrayreportwritingvisualizationsinglecellspatialgenesignaling
7 stars 6.28 score 15 scriptsbioc
StructuralVariantAnnotation:Variant annotations for structural variants
StructuralVariantAnnotation provides a framework for analysis of structural variants within the Bioconductor ecosystem. This package contains contains useful helper functions for dealing with structural variants in VCF format. The packages contains functions for parsing VCFs from a number of popular callers as well as functions for dealing with breakpoints involving two separate genomic loci encoded as GRanges objects.
Maintained by Daniel Cameron. Last updated 5 months ago.
dataimportsequencingannotationgeneticsvariantannotation
6.26 score 102 scripts 2 dependentsbioc
lumi:BeadArray Specific Methods for Illumina Methylation and Expression Microarrays
The lumi package provides an integrated solution for the Illumina microarray data analysis. It includes functions of Illumina BeadStudio (GenomeStudio) data input, quality control, BeadArray-specific variance stabilization, normalization and gene annotation at the probe level. It also includes the functions of processing Illumina methylation microarrays, especially Illumina Infinium methylation microarrays.
Maintained by Lei Huang. Last updated 5 months ago.
microarrayonechannelpreprocessingdnamethylationqualitycontroltwochannel
6.26 score 294 scripts 5 dependentsbioc
CopyNumberPlots:Create Copy-Number Plots using karyoploteR functionality
CopyNumberPlots have a set of functions extending karyoploteRs functionality to create beautiful, customizable and flexible plots of copy-number related data.
Maintained by Bernat Gel. Last updated 5 months ago.
visualizationcopynumbervariationcoverageonechanneldataimportsequencingdnaseqbioconductorbioconductor-packagebioinformaticscopy-number-variationgenomicsgenomics-visualization
6 stars 6.24 score 16 scripts 2 dependentsbioc
RAIDS:Accurate Inference of Genetic Ancestry from Cancer Sequences
This package implements specialized algorithms that enable genetic ancestry inference from various cancer sequences sources (RNA, Exome and Whole-Genome sequences). This package also implements a simulation algorithm that generates synthetic cancer-derived data. This code and analysis pipeline was designed and developed for the following publication: Belleau, P et al. Genetic Ancestry Inference from Cancer-Derived Molecular Data across Genomic and Transcriptomic Platforms. Cancer Res 1 January 2023; 83 (1): 49–58.
Maintained by Pascal Belleau. Last updated 5 months ago.
geneticssoftwaresequencingwholegenomeprincipalcomponentgeneticvariabilitydimensionreductionbiocviewsancestrycancer-genomicsexome-sequencinggenomicsinferencer-languagerna-seqrna-sequencingwhole-genome-sequencing
5 stars 6.23 score 19 scriptsbioc
ReportingTools:Tools for making reports in various formats
The ReportingTools software package enables users to easily display reports of analysis results generated from sources such as microarray and sequencing data. The package allows users to create HTML pages that may be viewed on a web browser such as Safari, or in other formats readable by programs such as Excel. Users can generate tables with sortable and filterable columns, make and display plots, and link table entries to other data sources such as NCBI or larger plots within the HTML page. Using the package, users can also produce a table of contents page to link various reports together for a particular project that can be viewed in a web browser. For more examples, please visit our site: http:// research-pub.gene.com/ReportingTools.
Maintained by Jason A. Hackney. Last updated 5 months ago.
immunooncologysoftwarevisualizationmicroarrayrnaseqgodatarepresentationgenesetenrichment
6.23 score 93 scripts 1 dependentsbioc
MungeSumstats:Standardise summary statistics from GWAS
The *MungeSumstats* package is designed to facilitate the standardisation of GWAS summary statistics. It reformats inputted summary statisitics to include SNP, CHR, BP and can look up these values if any are missing. It also pefrorms dozens of QC and filtering steps to ensure high data quality and minimise inter-study differences.
Maintained by Alan Murphy. Last updated 3 months ago.
snpwholegenomegeneticscomparativegenomicsgenomewideassociationgenomicvariationpreprocessing
3 stars 6.23 score 91 scriptsbioc
VariantFiltering:Filtering of coding and non-coding genetic variants
Filter genetic variants using different criteria such as inheritance model, amino acid change consequence, minor allele frequencies across human populations, splice site strength, conservation, etc.
Maintained by Robert Castelo. Last updated 2 months ago.
geneticshomo_sapiensannotationsnpsequencinghighthroughputsequencing
4 stars 6.23 score 21 scriptsbioc
iNETgrate:Integrates DNA methylation data with gene expression in a single gene network
The iNETgrate package provides functions to build a correlation network in which nodes are genes. DNA methylation and gene expression data are integrated to define the connections between genes. This network is used to identify modules (clusters) of genes. The biological information in each of the resulting modules is represented by an eigengene. These biological signatures can be used as features e.g., for classification of patients into risk categories. The resulting biological signatures are very robust and give a holistic view of the underlying molecular changes.
Maintained by Habil Zare. Last updated 5 months ago.
geneexpressionrnaseqdnamethylationnetworkinferencenetworkgraphandnetworkbiomedicalinformaticssystemsbiologytranscriptomicsclassificationclusteringdimensionreductionprincipalcomponentmrnamicroarraynormalizationgenepredictionkeggsurvivalcore-services
74 stars 6.21 score 1 scriptsbioc
scruff:Single Cell RNA-Seq UMI Filtering Facilitator (scruff)
A pipeline which processes single cell RNA-seq (scRNA-seq) reads from CEL-seq and CEL-seq2 protocols. Demultiplex scRNA-seq FASTQ files, align reads to reference genome using Rsubread, and generate UMI filtered count matrix. Also provide visualizations of read alignments and pre- and post-alignment QC metrics.
Maintained by Zhe Wang. Last updated 5 months ago.
softwaretechnologysequencingalignmentrnaseqsinglecellworkflowsteppreprocessingqualitycontrolvisualizationimmunooncologybioinformaticsscrna-seqsingle-cellumi
8 stars 6.20 score 22 scriptsbioc
cfDNAPro:cfDNAPro extracts and Visualises biological features from whole genome sequencing data of cell-free DNA
cfDNA fragments carry important features for building cancer sample classification ML models, such as fragment size, and fragment end motif etc. Analyzing and visualizing fragment size metrics, as well as other biological features in a curated, standardized, scalable, well-documented, and reproducible way might be time intensive. This package intends to resolve these problems and simplify the process. It offers two sets of functions for cfDNA feature characterization and visualization.
Maintained by Haichao Wang. Last updated 5 months ago.
visualizationsequencingwholegenomebioinformaticscancer-genomicscancer-researchcell-free-dnaearly-detectiongenomics-visualizationliquid-biopsyswgswhole-genome-sequencing
29 stars 6.18 score 13 scriptsbioc
atena:Analysis of Transposable Elements
Quantify expression of transposable elements (TEs) from RNA-seq data through different methods, including ERVmap, TEtranscripts and Telescope. A common interface is provided to use each of these methods, which consists of building a parameter object, calling the quantification function with this object and getting a SummarizedExperiment object as output container of the quantified expression profiles. The implementation allows one to quantify TEs and gene transcripts in an integrated manner.
Maintained by Robert Castelo. Last updated 2 months ago.
transcriptiontranscriptomicsrnaseqsequencingpreprocessingsoftwaregeneexpressioncoveragedifferentialexpressionfunctionalgenomics
10 stars 6.18 score 1 scriptsbioc
segmentSeq:Methods for identifying small RNA loci from high-throughput sequencing data
High-throughput sequencing technologies allow the production of large volumes of short sequences, which can be aligned to the genome to create a set of matches to the genome. By looking for regions of the genome which to which there are high densities of matches, we can infer a segmentation of the genome into regions of biological significance. The methods in this package allow the simultaneous segmentation of data from multiple samples, taking into account replicate data, in order to create a consensus segmentation. This has obvious applications in a number of classes of sequencing experiments, particularly in the discovery of small RNA loci and novel mRNA transcriptome discovery.
Maintained by Samuel Granjeaud. Last updated 5 months ago.
multiplecomparisonsequencingalignmentdifferentialexpressionqualitycontroldataimport
6.17 score 42 scriptsbioc
crisprViz:Visualization Functions for CRISPR gRNAs
Provides functionalities to visualize and contextualize CRISPR guide RNAs (gRNAs) on genomic tracks across nucleases and applications. Works in conjunction with the crisprBase and crisprDesign Bioconductor packages. Plots are produced using the Gviz framework.
Maintained by Jean-Philippe Fortin. Last updated 5 months ago.
crisprfunctionalgenomicsgenetargetbioconductorbioconductor-packagecrispr-analysiscrispr-designgrnagrna-sequencegrna-sequencessgrnasgrna-designvisualization
8 stars 6.16 score 6 scripts 2 dependentsbioc
CAGEr:Analysis of CAGE (Cap Analysis of Gene Expression) sequencing data for precise mapping of transcription start sites and promoterome mining
The _CAGEr_ package identifies transcription start sites (TSS) and their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to profile expression levels of these clusters by cumulative expression and rarefaction analysis, and outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr performs analyses of promoter width and detects differential usage of TSSs (promoter shifting) between samples. CAGEr also exports its data as genome browser tracks, and as R objects for downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR, or seqArchR.
Maintained by Charles Plessy. Last updated 5 months ago.
preprocessingsequencingnormalizationfunctionalgenomicstranscriptiongeneexpressionclusteringvisualization
6.12 score 73 scriptsbioc
esATAC:An Easy-to-use Systematic pipeline for ATACseq data analysis
This package provides a framework and complete preset pipeline for quantification and analysis of ATAC-seq Reads. It covers raw sequencing reads preprocessing (FASTQ files), reads alignment (Rbowtie2), aligned reads file operations (SAM, BAM, and BED files), peak calling (F-seq), genome annotations (Motif, GO, SNP analysis) and quality control report. The package is managed by dataflow graph. It is easy for user to pass variables seamlessly between processes and understand the workflow. Users can process FASTQ files through end-to-end preset pipeline which produces a pretty HTML report for quality control and preliminary statistical results, or customize workflow starting from any intermediate stages with esATAC functions easily and flexibly.
Maintained by Zheng Wei. Last updated 5 months ago.
immunooncologysequencingdnaseqqualitycontrolalignmentpreprocessingcoverageatacseqdnaseseqatac-seqbioconductorpipelinecppopenjdk
23 stars 6.11 score 3 scriptsbioc
tidyomics:Easily install and load the tidyomics ecosystem
The tidyomics ecosystem is a set of packages for ’omic data analysis that work together in harmony; they share common data representations and API design, consistent with the tidyverse ecosystem. The tidyomics package is designed to make it easy to install and load core packages from the tidyomics ecosystem with a single command.
Maintained by Stefano Mangiola. Last updated 5 months ago.
assaydomaininfrastructurernaseqdifferentialexpressiongeneexpressionnormalizationclusteringqualitycontrolsequencingtranscriptiontranscriptomicscytometrygenomicstidyverse
64 stars 6.11 score 5 scriptsbioc
ramwas:Fast Methylome-Wide Association Study Pipeline for Enrichment Platforms
A complete toolset for methylome-wide association studies (MWAS). It is specifically designed for data from enrichment based methylation assays, but can be applied to other data as well. The analysis pipeline includes seven steps: (1) scanning aligned reads from BAM files, (2) calculation of quality control measures, (3) creation of methylation score (coverage) matrix, (4) principal component analysis for capturing batch effects and detection of outliers, (5) association analysis with respect to phenotypes of interest while correcting for top PCs and known covariates, (6) annotation of significant findings, and (7) multi-marker analysis (methylation risk score) using elastic net. Additionally, RaMWAS include tools for joint analysis of methlyation and genotype data. This work is published in Bioinformatics, Shabalin et al. (2018) <doi:10.1093/bioinformatics/bty069>.
Maintained by Andrey A Shabalin. Last updated 5 months ago.
dnamethylationsequencingqualitycontrolcoveragepreprocessingnormalizationbatcheffectprincipalcomponentdifferentialmethylationvisualization
10 stars 6.08 score 85 scriptsbioc
affycoretools:Functions useful for those doing repetitive analyses with Affymetrix GeneChips
Various wrapper functions that have been written to streamline the more common analyses that a core Biostatistician might see.
Maintained by James W. MacDonald. Last updated 5 months ago.
reportwritingmicroarrayonechannelgeneexpression
6.07 score 117 scriptsbioc
metaseqR2:An R package for the analysis and result reporting of RNA-Seq data by combining multiple statistical algorithms
Provides an interface to several normalization and statistical testing packages for RNA-Seq gene expression data. Additionally, it creates several diagnostic plots, performs meta-analysis by combinining the results of several statistical tests and reports the results in an interactive way.
Maintained by Panagiotis Moulos. Last updated 18 days ago.
softwaregeneexpressiondifferentialexpressionworkflowsteppreprocessingqualitycontrolnormalizationreportwritingrnaseqtranscriptionsequencingtranscriptomicsbayesianclusteringcellbiologybiomedicalinformaticsfunctionalgenomicssystemsbiologyimmunooncologyalternativesplicingdifferentialsplicingmultiplecomparisontimecoursedataimportatacseqepigeneticsregressionproprietaryplatformsgenesetenrichmentbatcheffectchipseq
7 stars 6.05 score 3 scriptsbioc
ENmix:Quality control and analysis tools for Illumina DNA methylation BeadChip
Tools for quanlity control, analysis and visulization of Illumina DNA methylation array data.
Maintained by Zongli Xu. Last updated 16 days ago.
dnamethylationpreprocessingqualitycontroltwochannelmicroarrayonechannelmethylationarraybatcheffectnormalizationdataimportregressionprincipalcomponentepigeneticsmultichanneldifferentialmethylationimmunooncology
6.01 score 115 scriptsbioc
Rqc:Quality Control Tool for High-Throughput Sequencing Data
Rqc is an optimised tool designed for quality control and assessment of high-throughput sequencing data. It performs parallel processing of entire files and produces a report which contains a set of high-resolution graphics.
Maintained by Welliton Souza. Last updated 5 months ago.
sequencingqualitycontroldataimportcpp
6.00 score 67 scriptsbioc
EventPointer:An effective identification of alternative splicing events using junction arrays and RNA-Seq data
EventPointer is an R package to identify alternative splicing events that involve either simple (case-control experiment) or complex experimental designs such as time course experiments and studies including paired-samples. The algorithm can be used to analyze data from either junction arrays (Affymetrix Arrays) or sequencing data (RNA-Seq). The software returns a data.frame with the detected alternative splicing events: gene name, type of event (cassette, alternative 3',...,etc), genomic position, statistical significance and increment of the percent spliced in (Delta PSI) for all the events. The algorithm can generate a series of files to visualize the detected alternative splicing events in IGV. This eases the interpretation of results and the design of primers for standard PCR validation.
Maintained by Juan A. Ferrer-Bonsoms. Last updated 5 months ago.
alternativesplicingdifferentialsplicingmrnamicroarrayrnaseqtranscriptionsequencingtimecourseimmunooncology
4 stars 6.00 score 6 scriptsbioc
kissDE:Retrieves Condition-Specific Variants in RNA-Seq Data
Retrieves condition-specific variants in RNA-seq data (SNVs, alternative-splicings, indels). It has been developed as a post-treatment of 'KisSplice' but can also be used with user's own data.
Maintained by Aurélie Siberchicot. Last updated 5 months ago.
alternativesplicingdifferentialsplicingexperimentaldesigngenomicvariationrnaseqtranscriptomics
3 stars 5.98 score 7 scriptsbioc
biscuiteer:Convenience Functions for Biscuit
A test harness for bsseq loading of Biscuit output, summarization of WGBS data over defined regions and in mappable samples, with or without imputation, dropping of mostly-NA rows, age estimates, etc.
Maintained by Jacob Morrison. Last updated 5 months ago.
dataimportmethylseqdnamethylation
6 stars 5.98 score 16 scriptsbioc
Rhisat2:R Wrapper for HISAT2 Aligner
An R interface to the HISAT2 spliced short-read aligner by Kim et al. (2015). The package contains wrapper functions to create a genome index and to perform the read alignment to the generated index.
Maintained by Charlotte Soneson. Last updated 3 months ago.
alignmentsequencingsplicedalignmentcpp
4 stars 5.98 score 7 scripts 1 dependentsbioc
mosdef:MOSt frequently used and useful Differential Expression Functions
This package provides functionality to run a number of tasks in the differential expression analysis workflow. This encompasses the most widely used steps, from running various enrichment analysis tools with a unified interface to creating plots and beautifying table components linking to external websites and databases. This streamlines the generation of comprehensive analysis reports.
Maintained by Federico Marini. Last updated 3 months ago.
geneexpressionsoftwaretranscriptiontranscriptomicsdifferentialexpressionvisualizationreportwritinggenesetenrichmentgo
5.98 score 4 dependentsbioc
raer:RNA editing tools in R
Toolkit for identification and statistical testing of RNA editing signals from within R. Provides support for identifying sites from bulk-RNA and single cell RNA-seq datasets, and general methods for extraction of allelic read counts from alignment files. Facilitates annotation and exploratory analysis of editing signals using Bioconductor packages and resources.
Maintained by Kent Riemondy. Last updated 5 months ago.
multiplecomparisonrnaseqsinglecellsequencingcoverageepitranscriptomicsfeatureextractionannotationalignmentbioconductor-packagerna-seq-analysissingle-cell-analysissingle-cell-rna-seqcurlbzip2xz-utilszlib
8 stars 5.98 score 6 scriptsbioc
wiggleplotr:Make read coverage plots from BigWig files
Tools to visualise read coverage from sequencing experiments together with genomic annotations (genes, transcripts, peaks). Introns of long transcripts can be rescaled to a fixed length for better visualisation of exonic read coverage.
Maintained by Kaur Alasoo. Last updated 5 months ago.
immunooncologycoveragernaseqchipseqsequencingvisualizationgeneexpressiontranscriptionalternativesplicing
5.97 score 26 scripts 3 dependentsbioc
scFeatures:scFeatures: Multi-view representations of single-cell and spatial data for disease outcome prediction
scFeatures constructs multi-view representations of single-cell and spatial data. scFeatures is a tool that generates multi-view representations of single-cell and spatial data through the construction of a total of 17 feature types. These features can then be used for a variety of analyses using other software in Biocondutor.
Maintained by Yue Cao. Last updated 5 months ago.
cellbasedassayssinglecellspatialsoftwaretranscriptomics
10 stars 5.95 score 15 scriptsbioc
REMP:Repetitive Element Methylation Prediction
Machine learning-based tools to predict DNA methylation of locus-specific repetitive elements (RE) by learning surrounding genetic and epigenetic information. These tools provide genomewide and single-base resolution of DNA methylation prediction on RE that are difficult to measure using array-based or sequencing-based platforms, which enables epigenome-wide association study (EWAS) and differentially methylated region (DMR) analysis on RE.
Maintained by Yinan Zheng. Last updated 5 months ago.
dnamethylationmicroarraymethylationarraysequencinggenomewideassociationepigeneticspreprocessingmultichanneltwochanneldifferentialmethylationqualitycontroldataimport
2 stars 5.94 score 18 scriptsbioc
normr:Normalization and difference calling in ChIP-seq data
Robust normalization and difference calling procedures for ChIP-seq and alike data. Read counts are modeled jointly as a binomial mixture model with a user-specified number of components. A fitted background estimate accounts for the effect of enrichment in certain regions and, therefore, represents an appropriate null hypothesis. This robust background is used to identify significantly enriched or depleted regions.
Maintained by Johannes Helmuth. Last updated 5 months ago.
bayesiandifferentialpeakcallingclassificationdataimportchipseqripseqfunctionalgenomicsgeneticsmultiplecomparisonnormalizationpeakdetectionpreprocessingalignmentcppopenmp
11 stars 5.93 score 13 scriptsbioc
SCOPE:A normalization and copy number estimation method for single-cell DNA sequencing
Whole genome single-cell DNA sequencing (scDNA-seq) enables characterization of copy number profiles at the cellular level. This circumvents the averaging effects associated with bulk-tissue sequencing and has increased resolution yet decreased ambiguity in deconvolving cancer subclones and elucidating cancer evolutionary history. ScDNA-seq data is, however, sparse, noisy, and highly variable even within a homogeneous cell population, due to the biases and artifacts that are introduced during the library preparation and sequencing procedure. Here, we propose SCOPE, a normalization and copy number estimation method for scDNA-seq data. The distinguishing features of SCOPE include: (i) utilization of cell-specific Gini coefficients for quality controls and for identification of normal/diploid cells, which are further used as negative control samples in a Poisson latent factor model for normalization; (ii) modeling of GC content bias using an expectation-maximization algorithm embedded in the Poisson generalized linear models, which accounts for the different copy number states along the genome; (iii) a cross-sample iterative segmentation procedure to identify breakpoints that are shared across cells from the same genetic background.
Maintained by Rujin Wang. Last updated 5 months ago.
singlecellnormalizationcopynumbervariationsequencingwholegenomecoveragealignmentqualitycontroldataimportdnaseq
5.92 score 84 scriptsbioc
TCseq:Time course sequencing data analysis
Quantitative and differential analysis of epigenomic and transcriptomic time course sequencing data, clustering analysis and visualization of the temporal patterns of time course data.
Maintained by Mengjun Wu. Last updated 5 months ago.
epigeneticstimecoursesequencingchipseqrnaseqdifferentialexpressionclusteringvisualization
5.92 score 28 scripts 1 dependentsbioc
cummeRbund:Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data.
Allows for persistent storage, access, exploration, and manipulation of Cufflinks high-throughput sequencing data. In addition, provides numerous plotting functions for commonly used visualizations.
Maintained by Loyal A. Goff. Last updated 5 months ago.
highthroughputsequencinghighthroughputsequencingdatarnaseqrnaseqdatageneexpressiondifferentialexpressioninfrastructuredataimportdatarepresentationvisualizationbioinformaticsclusteringmultiplecomparisonsqualitycontrol
5.92 score 209 scriptsbioc
SGSeq:Splice event prediction and quantification from RNA-seq data
SGSeq is a software package for analyzing splice events from RNA-seq data. Input data are RNA-seq reads mapped to a reference genome in BAM format. Genes are represented as a splice graph, which can be obtained from existing annotation or predicted from the mapped sequence reads. Splice events are identified from the graph and are quantified locally using structurally compatible reads at the start or end of each splice variant. The software includes functions for splice event prediction, quantification, visualization and interpretation.
Maintained by Leonard Goldstein. Last updated 5 months ago.
alternativesplicingimmunooncologyrnaseqtranscription
5.91 score 45 scripts 3 dependentsbioc
Repitools:Epigenomic tools
Tools for the analysis of enrichment-based epigenomic data. Features include summarization and visualization of epigenomic data across promoters according to gene expression context, finding regions of differential methylation/binding, BayMeth for quantifying methylation etc.
Maintained by Mark Robinson. Last updated 5 months ago.
dnamethylationgeneexpressionmethylseq
5.90 score 267 scriptsbioc
BUSpaRse:kallisto | bustools R utilities
The kallisto | bustools pipeline is a fast and modular set of tools to convert single cell RNA-seq reads in fastq files into gene count or transcript compatibility counts (TCC) matrices for downstream analysis. Central to this pipeline is the barcode, UMI, and set (BUS) file format. This package serves the following purposes: First, this package allows users to manipulate BUS format files as data frames in R and then convert them into gene count or TCC matrices. Furthermore, since R and Rcpp code is easier to handle than pure C++ code, users are encouraged to tweak the source code of this package to experiment with new uses of BUS format and different ways to convert the BUS file into gene count matrix. Second, this package can conveniently generate files required to generate gene count matrices for spliced and unspliced transcripts for RNA velocity. Here biotypes can be filtered and scaffolds and haplotypes can be removed, and the filtered transcriptome can be extracted and written to disk. Third, this package implements utility functions to get transcripts and associated genes required to convert BUS files to gene count matrices, to write the transcript to gene information in the format required by bustools, and to read output of bustools into R as sparses matrices.
Maintained by Lambda Moses. Last updated 5 months ago.
singlecellrnaseqworkflowstepcpp
9 stars 5.87 score 165 scriptsbioc
APAlyzer:A toolkit for APA analysis using RNA-seq data
Perform 3'UTR APA, Intronic APA and gene expression analysis using RNA-seq data.
Maintained by Ruijia Wang. Last updated 5 months ago.
sequencingrnaseqdifferentialexpressiongeneexpressiongeneregulationannotationdataimportsoftwareative-polyadenylationbioinformatics-toolrna-seq
9 stars 5.86 score 9 scriptsbioc
CellBarcode:Cellular DNA Barcode Analysis toolkit
The package CellBarcode performs Cellular DNA Barcode analysis. It can handle all kinds of DNA barcodes, as long as the barcode is within a single sequencing read and has a pattern that can be matched by a regular expression. \code{CellBarcode} can handle barcodes with flexible lengths, with or without UMI (unique molecular identifier). This tool also can be used for pre-processing some amplicon data such as CRISPR gRNA screening, immune repertoire sequencing, and metagenome data.
Maintained by Wenjie Sun. Last updated 8 days ago.
preprocessingqualitycontrolsequencingcrisprampliconamplicon-sequencingcellular-barcodecpp
1 stars 5.86 score 40 scriptsbioc
crisprBowtie:Bowtie-based alignment of CRISPR gRNA spacer sequences
Provides a user-friendly interface to map on-targets and off-targets of CRISPR gRNA spacer sequences using bowtie. The alignment is fast, and can be performed using either commonly-used or custom CRISPR nucleases. The alignment can work with any reference or custom genomes. Both DNA- and RNA-targeting nucleases are supported.
Maintained by Jean-Philippe Fortin. Last updated 5 months ago.
crisprfunctionalgenomicsalignmentalignerbioconductorbioconductor-packagebowtiecrispr-analysiscrispr-cas9crispr-designcrispr-targetgrnagrna-sequencegrna-sequencessgrnasgrna-design
3 stars 5.86 score 7 scripts 4 dependentsssnn-airr
tigger:Infers Novel Immunoglobulin Alleles from Sequencing Data
Infers the V genotype of an individual from immunoglobulin (Ig) repertoire sequencing data (AIRR-Seq, Rep-Seq). Includes detection of any novel alleles. This information is then used to correct existing V allele calls from among the sample sequences. Citations: Gadala-Maria, et al (2015) <doi:10.1073/pnas.1417683112>, Gadala-Maria, et al (2019) <doi:10.3389/fimmu.2019.00129>.
Maintained by Susanna Marquez. Last updated 3 months ago.
5.86 score 120 scripts 1 dependentsbioc
ChromSCape:Analysis of single-cell epigenomics datasets with a Shiny App
ChromSCape - Chromatin landscape profiling for Single Cells - is a ready-to-launch user-friendly Shiny Application for the analysis of single-cell epigenomics datasets (scChIP-seq, scATAC-seq, scCUT&Tag, ...) from aligned data to differential analysis & gene set enrichment analysis. It is highly interactive, enables users to save their analysis and covers a wide range of analytical steps: QC, preprocessing, filtering, batch correction, dimensionality reduction, vizualisation, clustering, differential analysis and gene set analysis.
Maintained by Pacome Prompsy. Last updated 5 months ago.
shinyappssoftwaresinglecellchipseqatacseqmethylseqclassificationclusteringepigeneticsprincipalcomponentannotationbatcheffectmultiplecomparisonnormalizationpathwayspreprocessingqualitycontrolreportwritingvisualizationgenesetenrichmentdifferentialpeakcallingepigenomicsshinysingle-cellcpp
14 stars 5.83 score 16 scriptsbioc
seqsetvis:Set Based Visualizations for Next-Gen Sequencing Data
seqsetvis enables the visualization and analysis of sets of genomic sites in next gen sequencing data. Although seqsetvis was designed for the comparison of mulitple ChIP-seq samples, this package is domain-agnostic and allows the processing of multiple genomic coordinate files (bed-like files) and signal files (bigwig files pileups from bam file). seqsetvis has multiple functions for fetching data from regions into a tidy format for analysis in data.table or tidyverse and visualization via ggplot2.
Maintained by Joseph R Boyd. Last updated 4 months ago.
softwarechipseqmultiplecomparisonsequencingvisualization
5.82 score 82 scriptsbioc
BindingSiteFinder:Binding site defintion based on iCLIP data
Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understand (post-) transcriptional regulatory processes. Here we present a workflow that describes how exact binding sites can be defined from iCLIP data. The package provides functions for binding site definition and result visualization. For details please see the vignette.
Maintained by Mirko Brüggemann. Last updated 10 days ago.
sequencinggeneexpressiongeneregulationfunctionalgenomicscoveragedataimportbinding-site-classificationbinding-sitesbioconductor-packageicliprna-binding-proteins
6 stars 5.80 score 3 scriptsbioc
tidyCoverage:Extract and aggregate genomic coverage over features of interest
`tidyCoverage` framework enables tidy manipulation of collections of genomic tracks and features using `tidySummarizedExperiment` methods. It facilitates the extraction, aggregation and visualization of genomic coverage over individual or thousands of genomic loci, relying on `CoverageExperiment` and `AggregatedCoverage` classes. This accelerates the integration of genomic track data in genomic analysis workflows.
Maintained by Jacques Serizay. Last updated 5 months ago.
21 stars 5.80 score 6 scriptsbioc
cicero:Predict cis-co-accessibility from single-cell chromatin accessibility data
Cicero computes putative cis-regulatory maps from single-cell chromatin accessibility data. It also extends monocle 2 for use in chromatin accessibility data.
Maintained by Hannah Pliner. Last updated 5 months ago.
sequencingclusteringcellbasedassaysimmunooncologygeneregulationgenetargetepigeneticsatacseqsinglecell
5.80 score 312 scriptsbioc
deconvR:Simulation and Deconvolution of Omic Profiles
This package provides a collection of functions designed for analyzing deconvolution of the bulk sample(s) using an atlas of reference omic signature profiles and a user-selected model. Users are given the option to create or extend a reference atlas and,also simulate the desired size of the bulk signature profile of the reference cell types.The package includes the cell-type-specific methylation atlas and, Illumina Epic B5 probe ids that can be used in deconvolution. Additionally,we included BSmeth2Probe, to make mapping WGBS data to their probe IDs easier.
Maintained by Irem B. Gündüz. Last updated 5 months ago.
dnamethylationregressiongeneexpressionrnaseqsinglecellstatisticalmethodtranscriptomicsbioconductor-packagedeconvolutiondna-methylationomics
10 stars 5.78 score 15 scriptsbioc
bioCancer:Interactive Multi-Omics Cancers Data Visualization and Analysis
This package is a Shiny App to visualize and analyse interactively Multi-Assays of Cancer Genomic Data.
Maintained by Karim Mezhoud. Last updated 5 months ago.
guidatarepresentationnetworkmultiplecomparisonpathwaysreactomevisualizationgeneexpressiongenetargetanalysisbiocancer-interfacecancercancer-studiesrmarkdown
20 stars 5.78 score 7 scriptsbioc
circRNAprofiler:circRNAprofiler: An R-Based Computational Framework for the Downstream Analysis of Circular RNAs
R-based computational framework for a comprehensive in silico analysis of circRNAs. This computational framework allows to combine and analyze circRNAs previously detected by multiple publicly available annotation-based circRNA detection tools. It covers different aspects of circRNAs analysis from differential expression analysis, evolutionary conservation, biogenesis to functional analysis.
Maintained by Simona Aufiero. Last updated 5 months ago.
annotationstructuralpredictionfunctionalpredictiongenepredictiongenomeassemblydifferentialexpression
10 stars 5.78 score 5 scriptsbioc
scRNAseqApp:A single-cell RNAseq Shiny app-package
The scRNAseqApp is a Shiny app package designed for interactive visualization of single-cell data. It is an enhanced version derived from the ShinyCell, repackaged to accommodate multiple datasets. The app enables users to visualize data containing various types of information simultaneously, facilitating comprehensive analysis. Additionally, it includes a user management system to regulate database accessibility for different users.
Maintained by Jianhong Ou. Last updated 16 days ago.
visualizationsinglecellrnaseqinteractive-visualizationsmultiple-usersshiny-appssingle-cell-rna-seq
4 stars 5.76 score 3 scriptsbioc
TVTB:TVTB: The VCF Tool Box
The package provides S4 classes and methods to filter, summarise and visualise genetic variation data stored in VCF files. In particular, the package extends the FilterRules class (S4Vectors package) to define news classes of filter rules applicable to the various slots of VCF objects. Functionalities are integrated and demonstrated in a Shiny web-application, the Shiny Variant Explorer (tSVE).
Maintained by Kevin Rue-Albrecht. Last updated 5 months ago.
softwaregeneticsgeneticvariabilitygenomicvariationdatarepresentationguidnaseqwholegenomevisualizationmultiplecomparisondataimportvariantannotationsequencingcoveragealignmentsequencematching
2 stars 5.76 score 16 scriptsbioc
atSNP:Affinity test for identifying regulatory SNPs
atSNP performs affinity tests of motif matches with the SNP or the reference genomes and SNP-led changes in motif matches.
Maintained by Sunyoung Shin. Last updated 5 months ago.
softwarechipseqgenomeannotationmotifannotationvisualizationcpp
1 stars 5.73 score 36 scriptsbioc
DAMEfinder:Finds DAMEs - Differential Allelicly MEthylated regions
'DAMEfinder' offers functionality for taking methtuple or bismark outputs to calculate ASM scores and compute DAMEs. It also offers nice visualization of methyl-circle plots.
Maintained by Stephany Orjuela. Last updated 5 months ago.
dnamethylationdifferentialmethylationcoverage
10 stars 5.70 score 9 scriptsbioc
PAST:Pathway Association Study Tool (PAST)
PAST takes GWAS output and assigns SNPs to genes, uses those genes to find pathways associated with the genes, and plots pathways based on significance. Implements methods for reading GWAS input data, finding genes associated with SNPs, calculating enrichment score and significance of pathways, and plotting pathways.
Maintained by Thrash Adam. Last updated 5 months ago.
5 stars 5.70 score 7 scriptsmichaelgruenstaeudl
PACVr:Plastome Assembly Coverage Visualization
Visualizes the coverage depth of a complete plastid genome as well as the equality of its inverted repeat regions in relation to the circular, quadripartite genome structure and the location of individual genes. For more information, please see Gruenstaeudl and Jenke (2020) <doi:10.1186/s12859-020-3475-0>.
Maintained by Michael Gruenstaeudl. Last updated 4 months ago.
3 stars 5.69 score 5 scriptsmano-b
MicroSEC:Sequence Error Filter for Formalin-Fixed and Paraffin-Embedded Samples
Clinical sequencing of tumor is usually performed on formalin-fixed and paraffin-embedded samples and have many sequencing errors. We found that the majority of these errors are detected in chimeric read caused by single-strand DNA with micro-homology. Our filtering pipeline focuses on the uneven distribution of the artifacts in each read and removes such errors in formalin-fixed and paraffin-embedded samples without over-eliminating the true mutations detected in fresh frozen samples.
Maintained by Masachika Ikegami. Last updated 3 months ago.
7 stars 5.66 score 8 scriptsmrcieu
gwasvcf:Tools for Dealing with GWAS Summary Data in VCF Format
Tools for dealing with GWAS summary data in VCF format. Includes reading, querying, writing, as well as helper functions such as LD proxy searches.
Maintained by Gibran Hemani. Last updated 2 years ago.
77 stars 5.65 score 129 scripts 1 dependents