Showing 116 of total 116 results (show query)
bioc
muscat:Multi-sample multi-group scRNA-seq data analysis tools
`muscat` provides various methods and visualization tools for DS analysis in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data, including cell-level mixed models and methods based on aggregated “pseudobulk” data, as well as a flexible simulation platform that mimics both single and multi-sample scRNA-seq data.
Maintained by Helena L. Crowell. Last updated 5 months ago.
immunooncologydifferentialexpressionsequencingsinglecellsoftwarestatisticalmethodvisualization
184 stars 10.74 score 686 scripts 1 dependentsbioc
Glimma:Interactive visualizations for gene expression analysis
This package produces interactive visualizations for RNA-seq data analysis, utilizing output from limma, edgeR, or DESeq2. It produces interactive htmlwidgets versions of popular RNA-seq analysis plots to enhance the exploration of analysis results by overlaying interactive features. The plots can be viewed in a web browser or embedded in notebook documents.
Maintained by Shian Su. Last updated 2 months ago.
differentialexpressiongeneexpressionmicroarrayreportwritingrnaseqsequencingvisualizationdifferential-expressioninteractive-visualizations
32 stars 10.58 score 600 scripts 1 dependentsbioc
ORFik:Open Reading Frames in Genomics
R package for analysis of transcript and translation features through manipulation of sequence data and NGS data like Ribo-Seq, RNA-Seq, TCP-Seq and CAGE. It is generalized in the sense that any transcript region can be analysed, as the name hints to it was made with investigation of ribosomal patterns over Open Reading Frames (ORFs) as it's primary use case. ORFik is extremely fast through use of C++, data.table and GenomicRanges. Package allows to reassign starts of the transcripts with the use of CAGE-Seq data, automatic shifting of RiboSeq reads, finding of Open Reading Frames for whole genomes and much more.
Maintained by Haakon Tjeldnes. Last updated 1 months ago.
immunooncologysoftwaresequencingriboseqrnaseqfunctionalgenomicscoveragealignmentdataimportcpp
33 stars 10.56 score 115 scripts 2 dependentsbioc
singleCellTK:Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data
The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
Maintained by Joshua David Campbell. Last updated 1 months ago.
singlecellgeneexpressiondifferentialexpressionalignmentclusteringimmunooncologybatcheffectnormalizationqualitycontroldataimportgui
182 stars 10.17 score 252 scriptsbioc
pcaExplorer:Interactive Visualization of RNA-seq Data Using a Principal Components Approach
This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.
Maintained by Federico Marini. Last updated 3 months ago.
immunooncologyvisualizationrnaseqdimensionreductionprincipalcomponentqualitycontrolguireportwritingshinyappsbioconductorprincipal-componentsreproducible-researchrna-seq-analysisrna-seq-datashinytranscriptomeuser-friendly
56 stars 9.63 score 180 scriptsbioc
DEGreport:Report of DEG analysis
Creation of ready-to-share figures of differential expression analyses of count data. It integrates some of the code mentioned in DESeq2 and edgeR vignettes, and report a ranked list of genes according to the fold changes mean and variability for each selected gene.
Maintained by Lorena Pantano. Last updated 5 months ago.
differentialexpressionvisualizationrnaseqreportwritinggeneexpressionimmunooncologybioconductordifferential-expressionqcreportrna-seqsmallrna
24 stars 9.42 score 354 scripts 1 dependentsbioc
IsoformSwitchAnalyzeR:Identify, Annotate and Visualize Isoform Switches with Functional Consequences from both short- and long-read RNA-seq data
Analysis of alternative splicing and isoform switches with predicted functional consequences (e.g. gain/loss of protein domains etc.) from quantification of all types of RNASeq by tools such as Kallisto, Salmon, StringTie, Cufflinks/Cuffdiff etc.
Maintained by Kristoffer Vitting-Seerup. Last updated 5 months ago.
geneexpressiontranscriptionalternativesplicingdifferentialexpressiondifferentialsplicingvisualizationstatisticalmethodtranscriptomevariantbiomedicalinformaticsfunctionalgenomicssystemsbiologytranscriptomicsrnaseqannotationfunctionalpredictiongenepredictiondataimportmultiplecomparisonbatcheffectimmunooncology
108 stars 9.26 score 125 scriptsbioc
OUTRIDER:OUTRIDER - OUTlier in RNA-Seq fInDER
Identification of aberrant gene expression in RNA-seq data. Read count expectations are modeled by an autoencoder to control for confounders in the data. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. Furthermore, OUTRIDER provides useful plotting functions to analyze and visualize the results.
Maintained by Christian Mertes. Last updated 5 months ago.
immunooncologyrnaseqtranscriptomicsalignmentsequencinggeneexpressiongeneticscount-datadiagnosticsexpression-analysismendelian-geneticsoutlier-detectionrna-seqopenblascpp
50 stars 9.07 score 110 scripts 1 dependentsbioc
BatchQC:Batch Effects Quality Control Software
Sequencing and microarray samples often are collected or processed in multiple batches or at different times. This often produces technical biases that can lead to incorrect results in the downstream analysis. BatchQC is a software tool that streamlines batch preprocessing and evaluation by providing interactive diagnostics, visualizations, and statistical analyses to explore the extent to which batch variation impacts the data. BatchQC diagnostics help determine whether batch adjustment needs to be done, and how correction should be applied before proceeding with a downstream analysis. Moreover, BatchQC interactively applies multiple common batch effect approaches to the data and the user can quickly see the benefits of each method. BatchQC is developed as a Shiny App. The output is organized into multiple tabs and each tab features an important part of the batch effect analysis and visualization of the data. The BatchQC interface has the following analysis groups: Summary, Differential Expression, Median Correlations, Heatmaps, Circular Dendrogram, PCA Analysis, Shape, ComBat and SVA.
Maintained by Jessica Anderson. Last updated 12 days ago.
batcheffectgraphandnetworkmicroarraynormalizationprincipalcomponentsequencingsoftwarevisualizationqualitycontrolrnaseqpreprocessingdifferentialexpressionimmunooncology
7 stars 9.06 score 54 scriptsbioc
FRASER:Find RAre Splicing Events in RNA-Seq Data
Detection of rare aberrant splicing events in transcriptome profiles. Read count ratio expectations are modeled by an autoencoder to control for confounding factors in the data. Given these expectations, the ratios are assumed to follow a beta-binomial distribution with a junction specific dispersion. Outlier events are then identified as read-count ratios that deviate significantly from this distribution. FRASER is able to detect alternative splicing, but also intron retention. The package aims to support diagnostics in the field of rare diseases where RNA-seq is performed to identify aberrant splicing defects.
Maintained by Christian Mertes. Last updated 5 months ago.
rnaseqalternativesplicingsequencingsoftwaregeneticscoverageaberrant-splicingdiagnosticsoutlier-detectionrare-diseaserna-seqsplicingopenblascpp
41 stars 8.50 score 155 scriptsbioc
GeneTonic:Enjoy Analyzing And Integrating The Results From Differential Expression Analysis And Functional Enrichment Analysis
This package provides functionality to combine the existing pieces of the transcriptome data and results, making it easier to generate insightful observations and hypothesis. Its usage is made easy with a Shiny application, combining the benefits of interactivity and reproducibility e.g. by capturing the features and gene sets of interest highlighted during the live session, and creating an HTML report as an artifact where text, code, and output coexist. Using the GeneTonicList as a standardized container for all the required components, it is possible to simplify the generation of multiple visualizations and summaries.
Maintained by Federico Marini. Last updated 3 months ago.
guigeneexpressionsoftwaretranscriptiontranscriptomicsvisualizationdifferentialexpressionpathwaysreportwritinggenesetenrichmentannotationgoshinyappsbioconductorbioconductor-packagedata-explorationdata-visualizationfunctional-enrichment-analysisgene-expressionpathway-analysisreproducible-researchrna-seq-analysisrna-seq-datashinytranscriptomeuser-friendly
77 stars 8.28 score 37 scripts 1 dependentsbioc
POMA:Tools for Omics Data Analysis
The POMA package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, POMA leverages the standardized SummarizedExperiment class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making POMA an essential asset for researchers handling omics datasets. See https://github.com/pcastellanoescuder/POMAShiny. Paper: Castellano-Escuder et al. (2021) <doi:10.1371/journal.pcbi.1009148> for more details.
Maintained by Pol Castellano-Escuder. Last updated 4 months ago.
batcheffectclassificationclusteringdecisiontreedimensionreductionmultidimensionalscalingnormalizationpreprocessingprincipalcomponentregressionrnaseqsoftwarestatisticalmethodvisualizationbioconductorbioinformaticsdata-visualizationdimension-reductionexploratory-data-analysismachine-learningomics-data-integrationpipelinepre-processingstatistical-analysisuser-friendlyworkflow
11 stars 8.16 score 20 scripts 1 dependentsbioc
debrowser:Interactive Differential Expresion Analysis Browser
Bioinformatics platform containing interactive plots and tables for differential gene and region expression studies. Allows visualizing expression data much more deeply in an interactive and faster way. By changing the parameters, users can easily discover different parts of the data that like never have been done before. Manually creating and looking these plots takes time. With DEBrowser users can prepare plots without writing any code. Differential expression, PCA and clustering analysis are made on site and the results are shown in various plots such as scatter, bar, box, volcano, ma plots and Heatmaps.
Maintained by Alper Kucukural. Last updated 5 months ago.
sequencingchipseqrnaseqdifferentialexpressiongeneexpressionclusteringimmunooncology
61 stars 7.80 score 65 scriptsbioc
hermes:Preprocessing, analyzing, and reporting of RNA-seq data
Provides classes and functions for quality control, filtering, normalization and differential expression analysis of pre-processed `RNA-seq` data. Data can be imported from `SummarizedExperiment` as well as `matrix` objects and can be annotated from `BioMart`. Filtering for genes without too low expression or containing required annotations, as well as filtering for samples with sufficient correlation to other samples or total number of reads is supported. The standard normalization methods including cpm, rpkm and tpm can be used, and 'DESeq2` as well as voom differential expression analyses are available.
Maintained by Daniel Sabanés Bové. Last updated 5 months ago.
rnaseqdifferentialexpressionnormalizationpreprocessingqualitycontrolrna-seqstatistical-engineering
11 stars 7.77 score 48 scripts 1 dependentsbioc
DEXSeq:Inference of differential exon usage in RNA-Seq
The package is focused on finding differential exon usage using RNA-seq exon counts between samples with different experimental designs. It provides functions that allows the user to make the necessary statistical tests based on a model that uses the negative binomial distribution to estimate the variance between biological replicates and generalized linear models for testing. The package also provides functions for the visualization and exploration of the results.
Maintained by Alejandro Reyes. Last updated 1 months ago.
immunooncologysequencingrnaseqdifferentialexpressionalternativesplicingdifferentialsplicinggeneexpressionvisualization
7.75 score 330 scripts 6 dependentsbioc
countsimQC:Compare Characteristic Features of Count Data Sets
countsimQC provides functionality to create a comprehensive report comparing a broad range of characteristics across a collection of count matrices. One important use case is the comparison of one or more synthetic count matrices to a real count matrix, possibly the one underlying the simulations. However, any collection of count matrices can be compared.
Maintained by Charlotte Soneson. Last updated 3 months ago.
microbiomernaseqsinglecellexperimentaldesignqualitycontrolreportwritingvisualizationimmunooncology
27 stars 7.69 score 24 scriptsbioc
phantasus:Visual and interactive gene expression analysis
Phantasus is a web-application for visual and interactive gene expression analysis. Phantasus is based on Morpheus – a web-based software for heatmap visualisation and analysis, which was integrated with an R environment via OpenCPU API. Aside from basic visualization and filtering methods, R-based methods such as k-means clustering, principal component analysis or differential expression analysis with limma package are supported.
Maintained by Alexey Sergushichev. Last updated 5 months ago.
geneexpressionguivisualizationdatarepresentationtranscriptomicsrnaseqmicroarraynormalizationclusteringdifferentialexpressionprincipalcomponentimmunooncology
43 stars 7.68 score 15 scriptsbioc
TBSignatureProfiler:Profile RNA-Seq Data Using TB Pathway Signatures
Gene signatures of TB progression, TB disease, and other TB disease states have been validated and published previously. This package aggregates known signatures and provides computational tools to enlist their usage on other datasets. The TBSignatureProfiler makes it easy to profile RNA-Seq data using these signatures and includes common signature profiling tools including ASSIGN, GSVA, and ssGSEA. Original models for some gene signatures are also available. A shiny app provides some functionality alongside for detailed command line accessibility.
Maintained by Aubrey R. Odom. Last updated 3 months ago.
geneexpressiondifferentialexpressionbioconductor-packagebiomarkersgene-signaturestuberculosis
12 stars 7.25 score 23 scriptsbioc
regionReport:Generate HTML or PDF reports for a set of genomic regions or DESeq2/edgeR results
Generate HTML or PDF reports to explore a set of regions such as the results from annotation-agnostic expression analysis of RNA-seq data at base-pair resolution performed by derfinder. You can also create reports for DESeq2 or edgeR results.
Maintained by Leonardo Collado-Torres. Last updated 3 months ago.
differentialexpressionsequencingrnaseqsoftwarevisualizationtranscriptioncoveragereportwritingdifferentialmethylationdifferentialpeakcallingimmunooncologyqualitycontrolbioconductorderfinderdeseq2edgerregionreportrmarkdown
9 stars 7.22 score 46 scriptsbioc
DiffBind:Differential Binding Analysis of ChIP-Seq Peak Data
Compute differentially bound sites from multiple ChIP-seq experiments using affinity (quantitative) data. Also enables occupancy (overlap) analysis and plotting functions.
Maintained by Rory Stark. Last updated 2 months ago.
sequencingchipseqatacseqdnaseseqmethylseqripseqdifferentialpeakcallingdifferentialmethylationgeneregulationhistonemodificationpeakdetectionbiomedicalinformaticscellbiologymultiplecomparisonnormalizationreportwritingepigeneticsfunctionalgenomicscurlbzip2xz-utilszlibcpp
7.13 score 512 scripts 2 dependentsbioc
RiboCrypt:Interactive visualization in genomics
R Package for interactive visualization and browsing NGS data. It contains a browser for both transcript and genomic coordinate view. In addition a QC and general metaplots are included, among others differential translation plots and gene expression plots. The package is still under development.
Maintained by Michal Swirski. Last updated 3 days ago.
softwaresequencingriboseqrnaseq
5 stars 7.08 score 22 scriptsbioc
isomiRs:Analyze isomiRs and miRNAs from small RNA-seq
Characterization of miRNAs and isomiRs, clustering and differential expression.
Maintained by Lorena Pantano. Last updated 5 months ago.
mirnarnaseqdifferentialexpressionclusteringimmunooncologyanalyze-isomirsbioconductorisomirs
8 stars 6.97 score 43 scriptsbioc
animalcules:Interactive microbiome analysis toolkit
animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.
Maintained by Jessica McClintock. Last updated 5 months ago.
microbiomemetagenomicscoveragevisualization
55 stars 6.95 score 23 scriptsbioc
DEFormats:Differential gene expression data formats converter
Convert between different data formats used by differential gene expression analysis tools.
Maintained by Andrzej Oleś. Last updated 5 months ago.
immunooncologydifferentialexpressiongeneexpressionrnaseqsequencingtranscription
4 stars 6.82 score 78 scripts 1 dependentsbioc
ideal:Interactive Differential Expression AnaLysis
This package provides functions for an Interactive Differential Expression AnaLysis of RNA-sequencing datasets, to extract quickly and effectively information downstream the step of differential expression. A Shiny application encapsulates the whole package. Support for reproducibility of the whole analysis is provided by means of a template report which gets automatically compiled and can be stored/shared.
Maintained by Federico Marini. Last updated 3 months ago.
immunooncologygeneexpressiondifferentialexpressionrnaseqsequencingvisualizationqualitycontrolguigenesetenrichmentreportwritingshinyappsbioconductordifferential-expressionreproducible-researchrna-seqrna-seq-analysisshinyuser-friendly
29 stars 6.78 score 5 scriptsbioc
proActiv:Estimate Promoter Activity from RNA-Seq data
Most human genes have multiple promoters that control the expression of different isoforms. The use of these alternative promoters enables the regulation of isoform expression pre-transcriptionally. Alternative promoters have been found to be important in a wide number of cell types and diseases. proActiv is an R package that enables the analysis of promoters from RNA-seq data. proActiv uses aligned reads as input, and generates counts and normalized promoter activity estimates for each annotated promoter. In particular, proActiv accepts junction files from TopHat2 or STAR or BAM files as inputs. These estimates can then be used to identify which promoter is active, which promoter is inactive, and which promoters change their activity across conditions. proActiv also allows visualization of promoter activity across conditions.
Maintained by Joseph Lee. Last updated 5 months ago.
rnaseqgeneexpressiontranscriptionalternativesplicinggeneregulationdifferentialsplicingfunctionalgenomicsepigeneticstranscriptomicspreprocessingalternative-promotersgenomicspromoter-activitypromoter-annotationrna-seq-data
51 stars 6.66 score 15 scriptsbioc
vidger:Create rapid visualizations of RNAseq data in R
The aim of vidger is to rapidly generate information-rich visualizations for the interpretation of differential gene expression results from three widely-used tools: Cuffdiff, DESeq2, and edgeR.
Maintained by Brandon Monier. Last updated 5 months ago.
immunooncologyvisualizationrnaseqdifferentialexpressiongeneexpressiondata-mungingdifferential-expressiongene-expressionrna-seq-analysis
19 stars 6.61 score 27 scriptsbioc
HTSFilter:Filter replicated high-throughput transcriptome sequencing data
This package implements a filtering procedure for replicated transcriptome sequencing data based on a global Jaccard similarity index in order to identify genes with low, constant levels of expression across one or more experimental conditions.
Maintained by Andrea Rau. Last updated 5 months ago.
sequencingrnaseqpreprocessingdifferentialexpressiongeneexpressionnormalizationimmunooncology
6.24 score 58 scripts 1 dependentsbioc
ReportingTools:Tools for making reports in various formats
The ReportingTools software package enables users to easily display reports of analysis results generated from sources such as microarray and sequencing data. The package allows users to create HTML pages that may be viewed on a web browser such as Safari, or in other formats readable by programs such as Excel. Users can generate tables with sortable and filterable columns, make and display plots, and link table entries to other data sources such as NCBI or larger plots within the HTML page. Using the package, users can also produce a table of contents page to link various reports together for a particular project that can be viewed in a web browser. For more examples, please visit our site: http:// research-pub.gene.com/ReportingTools.
Maintained by Jason A. Hackney. Last updated 5 months ago.
immunooncologysoftwarevisualizationmicroarrayrnaseqgodatarepresentationgenesetenrichment
6.23 score 93 scripts 1 dependentsbioc
affycoretools:Functions useful for those doing repetitive analyses with Affymetrix GeneChips
Various wrapper functions that have been written to streamline the more common analyses that a core Biostatistician might see.
Maintained by James W. MacDonald. Last updated 5 months ago.
reportwritingmicroarrayonechannelgeneexpression
6.07 score 117 scriptsbioc
metaseqR2:An R package for the analysis and result reporting of RNA-Seq data by combining multiple statistical algorithms
Provides an interface to several normalization and statistical testing packages for RNA-Seq gene expression data. Additionally, it creates several diagnostic plots, performs meta-analysis by combinining the results of several statistical tests and reports the results in an interactive way.
Maintained by Panagiotis Moulos. Last updated 19 days ago.
softwaregeneexpressiondifferentialexpressionworkflowsteppreprocessingqualitycontrolnormalizationreportwritingrnaseqtranscriptionsequencingtranscriptomicsbayesianclusteringcellbiologybiomedicalinformaticsfunctionalgenomicssystemsbiologyimmunooncologyalternativesplicingdifferentialsplicingmultiplecomparisontimecoursedataimportatacseqepigeneticsregressionproprietaryplatformsgenesetenrichmentbatcheffectchipseq
7 stars 6.05 score 3 scriptsbioc
kissDE:Retrieves Condition-Specific Variants in RNA-Seq Data
Retrieves condition-specific variants in RNA-seq data (SNVs, alternative-splicings, indels). It has been developed as a post-treatment of 'KisSplice' but can also be used with user's own data.
Maintained by Aurélie Siberchicot. Last updated 5 months ago.
alternativesplicingdifferentialsplicingexperimentaldesigngenomicvariationrnaseqtranscriptomics
3 stars 5.98 score 7 scriptsbioc
mosdef:MOSt frequently used and useful Differential Expression Functions
This package provides functionality to run a number of tasks in the differential expression analysis workflow. This encompasses the most widely used steps, from running various enrichment analysis tools with a unified interface to creating plots and beautifying table components linking to external websites and databases. This streamlines the generation of comprehensive analysis reports.
Maintained by Federico Marini. Last updated 3 months ago.
geneexpressionsoftwaretranscriptiontranscriptomicsdifferentialexpressionvisualizationreportwritinggenesetenrichmentgo
5.98 score 4 dependentsbioc
PathoStat:PathoStat Statistical Microbiome Analysis Package
The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis.
Maintained by Solaiappan Manimaran. Last updated 5 months ago.
microbiomemetagenomicsgraphandnetworkmicroarraypatternlogicprincipalcomponentsequencingsoftwarevisualizationrnaseqimmunooncology
8 stars 5.90 score 8 scriptsbioc
APAlyzer:A toolkit for APA analysis using RNA-seq data
Perform 3'UTR APA, Intronic APA and gene expression analysis using RNA-seq data.
Maintained by Ruijia Wang. Last updated 5 months ago.
sequencingrnaseqdifferentialexpressiongeneexpressiongeneregulationannotationdataimportsoftwareative-polyadenylationbioinformatics-toolrna-seq
9 stars 5.86 score 9 scriptsguokai8
microbial:Do 16s Data Analysis and Generate Figures
Provides functions to enhance the available statistical analysis procedures in R by providing simple functions to analysis and visualize the 16S rRNA data.Here we present a tutorial with minimum working examples to demonstrate usage and dependencies.
Maintained by Kai Guo. Last updated 6 months ago.
softwaregraphandnetworkmicrobiomemicrobiome-analysis
13 stars 5.81 score 25 scriptsbioc
circRNAprofiler:circRNAprofiler: An R-Based Computational Framework for the Downstream Analysis of Circular RNAs
R-based computational framework for a comprehensive in silico analysis of circRNAs. This computational framework allows to combine and analyze circRNAs previously detected by multiple publicly available annotation-based circRNA detection tools. It covers different aspects of circRNAs analysis from differential expression analysis, evolutionary conservation, biogenesis to functional analysis.
Maintained by Simona Aufiero. Last updated 5 months ago.
annotationstructuralpredictionfunctionalpredictiongenepredictiongenomeassemblydifferentialexpression
10 stars 5.78 score 5 scriptsbioc
benchdamic:Benchmark of differential abundance methods on microbiome data
Starting from a microbiome dataset (16S or WMS with absolute count values) it is possible to perform several analysis to assess the performances of many differential abundance detection methods. A basic and standardized version of the main differential abundance analysis methods is supplied but the user can also add his method to the benchmark. The analyses focus on 4 main aspects: i) the goodness of fit of each method's distributional assumptions on the observed count data, ii) the ability to control the false discovery rate, iii) the within and between method concordances, iv) the truthfulness of the findings if any apriori knowledge is given. Several graphical functions are available for result visualization.
Maintained by Matteo Calgaro. Last updated 4 months ago.
metagenomicsmicrobiomedifferentialexpressionmultiplecomparisonnormalizationpreprocessingsoftwarebenchmarkdifferential-abundance-methods
8 stars 5.78 score 8 scriptsbioc
GDCRNATools:GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, mRNA, and miRNA data in GDC
This is an easy-to-use package for downloading, organizing, and integrative analyzing RNA expression data in GDC with an emphasis on deciphering the lncRNA-mRNA related ceRNA regulatory network in cancer. Three databases of lncRNA-miRNA interactions including spongeScan, starBase, and miRcode, as well as three databases of mRNA-miRNA interactions including miRTarBase, starBase, and miRcode are incorporated into the package for ceRNAs network construction. limma, edgeR, and DESeq2 can be used to identify differentially expressed genes/miRNAs. Functional enrichment analyses including GO, KEGG, and DO can be performed based on the clusterProfiler and DO packages. Both univariate CoxPH and KM survival analyses of multiple genes can be implemented in the package. Besides some routine visualization functions such as volcano plot, bar plot, and KM plot, a few simply shiny apps are developed to facilitate visualization of results on a local webpage.
Maintained by Ruidong Li. Last updated 5 months ago.
immunooncologygeneexpressiondifferentialexpressiongeneregulationgenetargetnetworkinferencesurvivalvisualizationgenesetenrichmentnetworkenrichmentnetworkrnaseqgokegg
5.64 score 44 scriptsbioc
SEtools:SEtools: tools for working with SummarizedExperiment
This includes a set of convenience functions for working with the SummarizedExperiment class. Note that plotting functions historically in this package have been moved to the sechm package (see vignette for details).
Maintained by Pierre-Luc Germain. Last updated 5 months ago.
2 stars 5.64 score 72 scriptsinsightsengineering
teal.modules.hermes:RNA-Seq Analysis Modules to Add to a Teal Application
RNA-seq analysis teal modules based on the `hermes` package.
Maintained by Daniel Sabanés Bové. Last updated 1 years ago.
7 stars 5.54 score 32 scriptseonurk
cinaR:A Computational Pipeline for Bulk 'ATAC-Seq' Profiles
Differential analyses and Enrichment pipeline for bulk 'ATAC-seq' data analyses. This package combines different packages to have an ultimate package for both data analyses and visualization of 'ATAC-seq' data. Methods are described in 'Karakaslar et al.' (2021) <doi:10.1101/2021.03.05.434143>.
Maintained by Onur Karakaslar. Last updated 10 months ago.
atac-seqdifferential-analysisenrichment-analysisgene-sets
13 stars 5.52 score 51 scriptstinnlab
RCPA:Consensus Pathway Analysis
Provides a set of functions to perform pathway analysis and meta-analysis from multiple gene expression datasets, as well as visualization of the results. This package wraps functionality from the following packages: Ritchie et al. (2015) <doi:10.1093/nar/gkv007>, Love et al. (2014) <doi:10.1186/s13059-014-0550-8>, Robinson et al. (2010) <doi:10.1093/bioinformatics/btp616>, Korotkevich et al. (2016) <arxiv:10.1101/060012>, Efron et al. (2015) <https://CRAN.R-project.org/package=GSA>, and Gu et al. (2012) <https://CRAN.R-project.org/package=CePa>.
Maintained by Ha Nguyen. Last updated 5 months ago.
biobasedeseq2geoqueryedgerlimmarcyjsfgseabrowservizsummarizedexperimentannotationdbirontotools
1 stars 5.50 score 70 scriptsbioc
ChIPQC:Quality metrics for ChIPseq data
Quality metrics for ChIPseq data.
Maintained by Tom Carroll. Last updated 5 months ago.
sequencingchipseqqualitycontrolreportwriting
5.45 score 140 scriptsbioc
CleanUpRNAseq:Detect and Correct Genomic DNA Contamination in RNA-seq Data
RNA-seq data generated by some library preparation methods, such as rRNA-depletion-based method and the SMART-seq method, might be contaminated by genomic DNA (gDNA), if DNase I disgestion is not performed properly during RNA preparation. CleanUpRNAseq is developed to check if RNA-seq data is suffered from gDNA contamination. If so, it can perform correction for gDNA contamination and reduce false discovery rate of differentially expressed genes.
Maintained by Haibo Liu. Last updated 4 months ago.
qualitycontrolsequencinggeneexpression
5 stars 5.44 score 4 scriptsbioc
SurfR:Surface Protein Prediction and Identification
Identify Surface Protein coding genes from a list of candidates. Systematically download data from GEO and TCGA or use your own data. Perform DGE on bulk RNAseq data. Perform Meta-analysis. Descriptive enrichment analysis and plots.
Maintained by Aurora Maurizio. Last updated 16 days ago.
softwaresequencingrnaseqgeneexpressiontranscriptiondifferentialexpressionprincipalcomponentgenesetenrichmentpathwaysbatcheffectfunctionalgenomicsvisualizationdataimportfunctionalpredictiongenepredictiongodgeenrichment-analysismetaanalysisplotsproteinspublic-datasurfacesurfaceome
3 stars 5.43 score 3 scriptsbioc
GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data
Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.
Maintained by Christian Arnold. Last updated 5 months ago.
softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq
5.40 score 24 scriptsbioc
UMI4Cats:UMI4Cats: Processing, analysis and visualization of UMI-4C chromatin contact data
UMI-4C is a technique that allows characterization of 3D chromatin interactions with a bait of interest, taking advantage of a sonication step to produce unique molecular identifiers (UMIs) that help remove duplication bias, thus allowing a better differential comparsion of chromatin interactions between conditions. This package allows processing of UMI-4C data, starting from FastQ files provided by the sequencing facility. It provides two statistical methods for detecting differential contacts and includes a visualization function to plot integrated information from a UMI-4C assay.
Maintained by Mireia Ramos-Rodriguez. Last updated 5 months ago.
qualitycontrolpreprocessingalignmentnormalizationvisualizationsequencingcoveragechromatinchromatin-interactiongenomicsumi4c
5 stars 5.40 score 7 scriptsbioc
iSEEde:iSEE extension for panels related to differential expression analysis
This package contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels or modes facilitating the analysis of differential expression results. This package does not perform differential expression. Instead, it provides methods to embed precomputed differential expression results in a SummarizedExperiment object, in a manner that is compatible with interactive visualisation in iSEE applications.
Maintained by Kevin Rue-Albrecht. Last updated 5 months ago.
softwareinfrastructuredifferentialexpressionbioconductorhacktoberfestiseeu
1 stars 5.38 score 15 scriptsbioc
diffUTR:diffUTR: Streamlining differential exon and 3' UTR usage
The diffUTR package provides a uniform interface and plotting functions for limma/edgeR/DEXSeq -powered differential bin/exon usage. It includes in addition an improved version of the limma::diffSplice method. Most importantly, diffUTR further extends the application of these frameworks to differential UTR usage analysis using poly-A site databases.
Maintained by Pierre-Luc Germain. Last updated 5 months ago.
6 stars 5.38 score 9 scriptsbioc
GeDi:Defining and visualizing the distances between different genesets
The package provides different distances measurements to calculate the difference between genesets. Based on these scores the genesets are clustered and visualized as graph. This is all presented in an interactive Shiny application for easy usage.
Maintained by Annekathrin Nedwed. Last updated 5 months ago.
guigenesetenrichmentsoftwaretranscriptionrnaseqvisualizationclusteringpathwaysreportwritinggokeggreactomeshinyapps
1 stars 5.36 score 22 scriptsbioc
TEKRABber:An R package estimates the correlations of orthologs and transposable elements between two species
TEKRABber is made to provide a user-friendly pipeline for comparing orthologs and transposable elements (TEs) between two species. It considers the orthology confidence between two species from BioMart to normalize expression counts and detect differentially expressed orthologs/TEs. Then it provides one to one correlation analysis for desired orthologs and TEs. There is also an app function to have a first insight on the result. Users can prepare orthologs/TEs RNA-seq expression data by their own preference to run TEKRABber following the data structure mentioned in the vignettes.
Maintained by Yao-Chung Chen. Last updated 1 months ago.
differentialexpressionnormalizationtranscriptiongeneexpressionbioconductorcpp
3 stars 5.33 score 18 scriptsbioc
HybridExpress:Comparative analysis of RNA-seq data for hybrids and their progenitors
HybridExpress can be used to perform comparative transcriptomics analysis of hybrids (or allopolyploids) relative to their progenitor species. The package features functions to perform exploratory analyses of sample grouping, identify differentially expressed genes in hybrids relative to their progenitors, classify genes in expression categories (N = 12) and classes (N = 5), and perform functional analyses. We also provide users with graphical functions for the seamless creation of publication-ready figures that are commonly used in the literature.
Maintained by Fabricio Almeida-Silva. Last updated 5 months ago.
softwarefunctionalgenomicsgeneexpressiontranscriptomicsrnaseqclassificationdifferentialexpressiongene-expressionhybridpolyploidyrna-seq
14 stars 5.32 score 2 scriptsbioc
DaMiRseq:Data Mining for RNA-seq data: normalization, feature selection and classification
The DaMiRseq package offers a tidy pipeline of data mining procedures to identify transcriptional biomarkers and exploit them for both binary and multi-class classification purposes. The package accepts any kind of data presented as a table of raw counts and allows including both continous and factorial variables that occur with the experimental setting. A series of functions enable the user to clean up the data by filtering genomic features and samples, to adjust data by identifying and removing the unwanted source of variation (i.e. batches and confounding factors) and to select the best predictors for modeling. Finally, a "stacking" ensemble learning technique is applied to build a robust classification model. Every step includes a checkpoint that the user may exploit to assess the effects of data management by looking at diagnostic plots, such as clustering and heatmaps, RLE boxplots, MDS or correlation plot.
Maintained by Mattia Chiesa. Last updated 5 months ago.
sequencingrnaseqclassificationimmunooncologyopenjdk
5.32 score 7 scripts 1 dependentsbioc
DEWSeq:Differential Expressed Windows Based on Negative Binomial Distribution
DEWSeq is a sliding window approach for the analysis of differentially enriched binding regions eCLIP or iCLIP next generation sequencing data.
Maintained by bioinformatics team Hentze. Last updated 5 months ago.
sequencinggeneregulationfunctionalgenomicsdifferentialexpressionbioinformaticseclipngs-analysis
5 stars 5.30 score 4 scriptsbioc
MultiRNAflow:An R package for integrated analysis of temporal RNA-seq data with multiple biological conditions
Our R package MultiRNAflow provides an easy to use unified framework allowing to automatically make both unsupervised and supervised (DE) analysis for datasets with an arbitrary number of biological conditions and time points. In particular, our code makes a deep downstream analysis of DE information, e.g. identifying temporal patterns across biological conditions and DE genes which are specific to a biological condition for each time.
Maintained by Rodolphe Loubaton. Last updated 5 months ago.
sequencingrnaseqgeneexpressiontranscriptiontimecoursepreprocessingvisualizationnormalizationprincipalcomponentclusteringdifferentialexpressiongenesetenrichmentpathways
6 stars 5.26 score 4 scriptsfrederikziebell
RNAseqQC:Quality Control for RNA-Seq Data
Functions for semi-automated quality control of bulk RNA-seq data.
Maintained by Frederik Ziebell. Last updated 9 months ago.
2 stars 5.21 score 27 scriptsbioc
scGPS:A complete analysis of single cell subpopulations, from identifying subpopulations to analysing their relationship (scGPS = single cell Global Predictions of Subpopulation)
The package implements two main algorithms to answer two key questions: a SCORE (Stable Clustering at Optimal REsolution) to find subpopulations, followed by scGPS to investigate the relationships between subpopulations.
Maintained by Quan Nguyen. Last updated 5 months ago.
singlecellclusteringdataimportsequencingcoverageopenblascpp
4 stars 5.20 score 7 scriptsbioc
icetea:Integrating Cap Enrichment with Transcript Expression Analysis
icetea (Integrating Cap Enrichment with Transcript Expression Analysis) provides functions for end-to-end analysis of multiple 5'-profiling methods such as CAGE, RAMPAGE and MAPCap, beginning from raw reads to detection of transcription start sites using replicates. It also allows performing differential TSS detection between group of samples, therefore, integrating the mRNA cap enrichment information with transcript expression analysis.
Maintained by Vivek Bhardwaj. Last updated 5 months ago.
immunooncologytranscriptiongeneexpressionsequencingrnaseqtranscriptomicsdifferentialexpressioncageexpressionrna-seq
2 stars 5.08 score 7 scriptsbioc
scQTLtools:An R package for single-cell eQTL analysis and visualization
This package specializes in analyzing and visualizing eQTL at the single-cell level. It can read gene expression matrices or Seurat data, or SingleCellExperiment object along with genotype data. It offers a function for cis-eQTL analysis to detect eQTL within a given range, and another function to fit models with three methods. Using this package, users can also generate single-cell level visualization result.
Maintained by Xiaofeng Wu. Last updated 4 days ago.
softwaregeneexpressiongeneticvariabilitysnpdifferentialexpressiongenomicvariationvariantdetectiongeneticsfunctionalgenomicssystemsbiologyregressionsinglecellnormalizationvisualizationrna-seqsc-eqtl
3 stars 5.02 scorebioc
GARS:GARS: Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and challenging datasets
Feature selection aims to identify and remove redundant, irrelevant and noisy variables from high-dimensional datasets. Selecting informative features affects the subsequent classification and regression analyses by improving their overall performances. Several methods have been proposed to perform feature selection: most of them relies on univariate statistics, correlation, entropy measurements or the usage of backward/forward regressions. Herein, we propose an efficient, robust and fast method that adopts stochastic optimization approaches for high-dimensional. GARS is an innovative implementation of a genetic algorithm that selects robust features in high-dimensional and challenging datasets.
Maintained by Mattia Chiesa. Last updated 5 months ago.
classificationfeatureextractionclusteringopenjdk
5.00 score 2 scriptsbioc
broadSeq:broadSeq : for streamlined exploration of RNA-seq data
This package helps user to do easily RNA-seq data analysis with multiple methods (usually which needs many different input formats). Here the user will provid the expression data as a SummarizedExperiment object and will get results from different methods. It will help user to quickly evaluate different methods.
Maintained by Rishi Das Roy. Last updated 5 months ago.
geneexpressiondifferentialexpressionrnaseqtranscriptomicssequencingcoveragegenesetenrichmentgo
4 stars 5.00 score 7 scriptsbioc
coseq:Co-Expression Analysis of Sequencing Data
Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided.
Maintained by Andrea Rau. Last updated 5 months ago.
geneexpressionrnaseqsequencingsoftwareimmunooncology
4.98 score 16 scriptsbioc
TCC:TCC: Differential expression analysis for tag count data with robust normalization strategies
This package provides a series of functions for performing differential expression analysis from RNA-seq count data using robust normalization strategy (called DEGES). The basic idea of DEGES is that potential differentially expressed genes or transcripts (DEGs) among compared samples should be removed before data normalization to obtain a well-ranked gene list where true DEGs are top-ranked and non-DEGs are bottom ranked. This can be done by performing a multi-step normalization strategy (called DEGES for DEG elimination strategy). A major characteristic of TCC is to provide the robust normalization methods for several kinds of count data (two-group with or without replicates, multi-group/multi-factor, and so on) by virtue of the use of combinations of functions in depended packages.
Maintained by Jianqiang Sun. Last updated 5 months ago.
immunooncologysequencingdifferentialexpressionrnaseq
4.91 score 41 scriptsbioc
MLSeq:Machine Learning Interface for RNA-Seq Data
This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART to RNA-Seq data.
Maintained by Gokmen Zararsiz. Last updated 5 months ago.
immunooncologysequencingrnaseqclassificationclustering
4.81 score 27 scripts 1 dependentsbioc
NBAMSeq:Negative Binomial Additive Model for RNA-Seq Data
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.
Maintained by Xu Ren. Last updated 5 months ago.
rnaseqdifferentialexpressiongeneexpressionsequencingcoveragedifferential-expressiongene-expressiongeneralized-additive-modelsgeneralized-linear-modelsnegative-binomial-regressionsplines
2 stars 4.78 score 2 scriptsbioc
mobileRNA:mobileRNA: Investigate the RNA mobilome & population-scale changes
Genomic analysis can be utilised to identify differences between RNA populations in two conditions, both in production and abundance. This includes the identification of RNAs produced by multiple genomes within a biological system. For example, RNA produced by pathogens within a host or mobile RNAs in plant graft systems. The mobileRNA package provides methods to pre-process, analyse and visualise the sRNA and mRNA populations based on the premise of mapping reads to all genotypes at the same time.
Maintained by Katie Jeynes-Cupper. Last updated 5 months ago.
visualizationrnaseqsequencingsmallrnagenomeassemblyclusteringexperimentaldesignqualitycontrolworkflowstepalignmentpreprocessingbioinformaticsplant-science
3 stars 4.78 score 2 scriptshugheylab
limorhyde2:Quantify Rhythmicity and Differential Rhythmicity in Genomic Data
Fit linear models based on periodic splines, moderate model coefficients using multivariate adaptive shrinkage, then compute properties of the moderated curves.
Maintained by Jake Hughey. Last updated 1 years ago.
4.78 score 2 scriptsbioc
Anaquin:Statistical analysis of sequins
The project is intended to support the use of sequins (synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard open source library for quantitative analysis, modelling and visualization of spike-in controls.
Maintained by Ted Wong. Last updated 5 months ago.
immunooncologydifferentialexpressionpreprocessingrnaseqgeneexpressionsoftware
4.65 score 45 scriptsbioc
magpie:MeRIP-Seq data Analysis for Genomic Power Investigation and Evaluation
This package aims to perform power analysis for the MeRIP-seq study. It calculates FDR, FDC, power, and precision under various study design parameters, including but not limited to sample size, sequencing depth, and testing method. It can also output results into .xlsx files or produce corresponding figures of choice.
Maintained by Daoyu Duan. Last updated 5 months ago.
epitranscriptomicsdifferentialmethylationsequencingrnaseqsoftware
4.60 score 40 scriptsbioc
NetActivity:Compute gene set scores from a deep learning framework
#' NetActivity enables to compute gene set scores from previously trained sparsely-connected autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData` contains different pre-trained models to be directly applied to the data. Alternatively, the users might use the package to compute gene set scores using custom models.
Maintained by Carlos Ruiz-Arenas. Last updated 5 months ago.
rnaseqmicroarraytranscriptionfunctionalgenomicsgogeneexpressionpathwayssoftware
4.59 score 26 scriptsbioc
DELocal:Identifies differentially expressed genes with respect to other local genes
The goal of DELocal is to identify DE genes compared to their neighboring genes from the same chromosomal location. It has been shown that genes of related functions are generally very far from each other in the chromosome. DELocal utilzes this information to identify DE genes comparing with their neighbouring genes.
Maintained by Rishi Das Roy. Last updated 5 months ago.
geneexpressiondifferentialexpressionrnaseqtranscriptomics
4.48 score 3 scripts 1 dependentsbioc
ERSSA:Empirical RNA-seq Sample Size Analysis
The ERSSA package takes user supplied RNA-seq differential expression dataset and calculates the number of differentially expressed genes at varying biological replicate levels. This allows the user to determine, without relying on any a priori assumptions, whether sufficient differential detection has been acheived with their RNA-seq dataset.
Maintained by Zixuan Shao. Last updated 5 months ago.
immunooncologygeneexpressiontranscriptiondifferentialexpressionrnaseqmultiplecomparisonqualitycontrol
4.48 score 1 scriptscore-bioinformatics
bulkAnalyseR:Interactive Shiny App for Bulk Sequencing Data
Given an expression matrix from a bulk sequencing experiment, pre-processes it and creates a shiny app for interactive data analysis and visualisation. The app contains quality checks, differential expression analysis, volcano and cross plots, enrichment analysis and gene regulatory network inference, and can be customised to contain more panels by the user.
Maintained by Ilias Moutsopoulos. Last updated 1 years ago.
27 stars 4.47 score 11 scriptsbioc
PRONE:The PROteomics Normalization Evaluator
High-throughput omics data are often affected by systematic biases introduced throughout all the steps of a clinical study, from sample collection to quantification. Normalization methods aim to adjust for these biases to make the actual biological signal more prominent. However, selecting an appropriate normalization method is challenging due to the wide range of available approaches. Therefore, a comparative evaluation of unnormalized and normalized data is essential in identifying an appropriate normalization strategy for a specific data set. This R package provides different functions for preprocessing, normalizing, and evaluating different normalization approaches. Furthermore, normalization methods can be evaluated on downstream steps, such as differential expression analysis and statistical enrichment analysis. Spike-in data sets with known ground truth and real-world data sets of biological experiments acquired by either tandem mass tag (TMT) or label-free quantification (LFQ) can be analyzed.
Maintained by Lis Arend. Last updated 10 days ago.
proteomicspreprocessingnormalizationdifferentialexpressionvisualizationdata-analysisevaluation
2 stars 4.41 score 9 scriptsbioc
zitools:Analysis of zero-inflated count data
zitools allows for zero inflated count data analysis by either using down-weighting of excess zeros or by replacing an appropriate proportion of excess zeros with NA. Through overloading frequently used statistical functions (such as mean, median, standard deviation), plotting functions (such as boxplots or heatmap) or differential abundance tests, it allows a wide range of downstream analyses for zero-inflated data in a less biased manner. This becomes applicable in the context of microbiome analyses, where the data is often overdispersed and zero-inflated, therefore making data analysis extremly challenging.
Maintained by Carlotta Meyring. Last updated 5 months ago.
softwarestatisticalmethodmicrobiome
4.40 score 6 scriptsbioc
INSPEcT:Modeling RNA synthesis, processing and degradation with RNA-seq data
INSPEcT (INference of Synthesis, Processing and dEgradation rates from Transcriptomic data) RNA-seq data in time-course experiments or steady-state conditions, with or without the support of nascent RNA data.
Maintained by Stefano de Pretis. Last updated 5 months ago.
sequencingrnaseqgeneregulationtimecoursesystemsbiology
4.38 score 9 scriptsbioc
SeqGSEA:Gene Set Enrichment Analysis (GSEA) of RNA-Seq Data: integrating differential expression and splicing
The package generally provides methods for gene set enrichment analysis of high-throughput RNA-Seq data by integrating differential expression and splicing. It uses negative binomial distribution to model read count data, which accounts for sequencing biases and biological variation. Based on permutation tests, statistical significance can also be achieved regarding each gene's differential expression and splicing, respectively.
Maintained by Xi Wang. Last updated 5 months ago.
sequencingrnaseqgenesetenrichmentgeneexpressiondifferentialexpressiondifferentialsplicingimmunooncology
4.34 score 11 scriptsbioc
CeTF:Coexpression for Transcription Factors using Regulatory Impact Factors and Partial Correlation and Information Theory analysis
This package provides the necessary functions for performing the Partial Correlation coefficient with Information Theory (PCIT) (Reverter and Chan 2008) and Regulatory Impact Factors (RIF) (Reverter et al. 2010) algorithm. The PCIT algorithm identifies meaningful correlations to define edges in a weighted network and can be applied to any correlation-based network including but not limited to gene co-expression networks, while the RIF algorithm identify critical Transcription Factors (TF) from gene expression data. These two algorithms when combined provide a very relevant layer of information for gene expression studies (Microarray, RNA-seq and single-cell RNA-seq data).
Maintained by Carlos Alberto Oliveira de Biagi Junior. Last updated 5 months ago.
sequencingrnaseqmicroarraygeneexpressiontranscriptionnormalizationdifferentialexpressionsinglecellnetworkregressionchipseqimmunooncologycoveragecpp
4.30 score 9 scriptsbioc
scBFA:A dimensionality reduction tool using gene detection pattern to mitigate noisy expression profile of scRNA-seq
This package is designed to model gene detection pattern of scRNA-seq through a binary factor analysis model. This model allows user to pass into a cell level covariate matrix X and gene level covariate matrix Q to account for nuisance variance(e.g batch effect), and it will output a low dimensional embedding matrix for downstream analysis.
Maintained by Ruoxin Li. Last updated 5 months ago.
singlecelltranscriptomicsdimensionreductiongeneexpressionatacseqbatcheffectkeggqualitycontrol
4.30 score 4 scriptsbioc
RiboDiPA:Differential pattern analysis for Ribo-seq data
This package performs differential pattern analysis for Ribo-seq data. It identifies genes with significantly different patterns in the ribosome footprint between two conditions. RiboDiPA contains five major components including bam file processing, P-site mapping, data binning, differential pattern analysis and footprint visualization.
Maintained by Ji-Ping Wang. Last updated 4 months ago.
riboseqgeneexpressiongeneregulationdifferentialexpressionsequencingcoveragealignmentrnaseqimmunooncologyqualitycontroldataimportsoftwarenormalizationcpp
4.30 score 1 scriptsbioc
blacksheepr:Outlier Analysis for pairwise differential comparison
Blacksheep is a tool designed for outlier analysis in the context of pairwise comparisons in an effort to find distinguishing characteristics from two groups. This tool was designed to be applied for biological applications such as phosphoproteomics or transcriptomics, but it can be used for any data that can be represented by a 2D table, and has two sub populations within the table to compare.
Maintained by RugglesLab. Last updated 5 months ago.
sequencingrnaseqgeneexpressiontranscriptiondifferentialexpressiontranscriptomics
4.30 score 6 scriptsloosolab
wilson:Web-Based Interactive Omics Visualization
Tool-set of modules for creating web-based applications that use plot based strategies to visualize and analyze multi-omics data. This package utilizes the 'shiny' and 'plotly' frameworks to provide a user friendly dashboard for interactive plotting.
Maintained by Hendrik Schultheis. Last updated 4 years ago.
2 stars 4.30 score 7 scriptsbioc
saseR:Scalable Aberrant Splicing and Expression Retrieval
saseR is a highly performant and fast framework for aberrant expression and splicing analyses. The main functions are: \itemize{ \item \code{\link{BamtoAspliCounts}} - Process BAM files to ASpli counts \item \code{\link{convertASpli}} - Get gene, bin or junction counts from ASpli SummarizedExperiment \item \code{\link{calculateOffsets}} - Create an offsets assays for aberrant expression or splicing analysis \item \code{\link{saseRfindEncodingDim}} - Estimate the optimal number of latent factors to include when estimating the mean expression \item \code{\link{saseRfit}} - Parameter estimation of the negative binomial distribution and compute p-values for aberrant expression and splicing } For information upon how to use these functions, check out our vignette at \url{https://github.com/statOmics/saseR/blob/main/vignettes/Vignette.Rmd} and the saseR paper: Segers, A. et al. (2023). Juggling offsets unlocks RNA-seq tools for fast scalable differential usage, aberrant splicing and expression analyses. bioRxiv. \url{https://doi.org/10.1101/2023.06.29.547014}.
Maintained by Alexandre Segers. Last updated 5 months ago.
differentialexpressiondifferentialsplicingregressiongeneexpressionalternativesplicingrnaseqsequencingsoftware
1 stars 4.30 score 1 scriptsbioc
gg4way:4way Plots of Differential Expression
4way plots enable a comparison of the logFC values from two contrasts of differential gene expression. The gg4way package creates 4way plots using the ggplot2 framework and supports popular Bioconductor objects. The package also provides information about the correlation between contrasts and significant genes of interest.
Maintained by Benjamin I Laufer. Last updated 5 months ago.
softwarevisualizationdifferentialexpressiongeneexpressiontranscriptionrnaseqsinglecellsequencing
4.30 score 3 scriptsbioc
anota2seq:Generally applicable transcriptome-wide analysis of translational efficiency using anota2seq
anota2seq provides analysis of translational efficiency and differential expression analysis for polysome-profiling and ribosome-profiling studies (two or more sample classes) quantified by RNA sequencing or DNA-microarray. Polysome-profiling and ribosome-profiling typically generate data for two RNA sources; translated mRNA and total mRNA. Analysis of differential expression is used to estimate changes within each RNA source (i.e. translated mRNA or total mRNA). Analysis of translational efficiency aims to identify changes in translation efficiency leading to altered protein levels that are independent of total mRNA levels (i.e. changes in translated mRNA that are independent of levels of total mRNA) or buffering, a mechanism regulating translational efficiency so that protein levels remain constant despite fluctuating total mRNA levels (i.e. changes in total mRNA that are independent of levels of translated mRNA). anota2seq applies analysis of partial variance and the random variance model to fulfill these tasks.
Maintained by Christian Oertlin. Last updated 5 months ago.
immunooncologygeneexpressiondifferentialexpressionmicroarraygenomewideassociationbatcheffectnormalizationrnaseqsequencinggeneregulationregression
4.28 score 12 scriptsbioc
easier:Estimate Systems Immune Response from RNA-seq data
This package provides a workflow for the use of EaSIeR tool, developed to assess patients' likelihood to respond to ICB therapies providing just the patients' RNA-seq data as input. We integrate RNA-seq data with different types of prior knowledge to extract quantitative descriptors of the tumor microenvironment from several points of view, including composition of the immune repertoire, and activity of intra- and extra-cellular communications. Then, we use multi-task machine learning trained in TCGA data to identify how these descriptors can simultaneously predict several state-of-the-art hallmarks of anti-cancer immune response. In this way we derive cancer-specific models and identify cancer-specific systems biomarkers of immune response. These biomarkers have been experimentally validated in the literature and the performance of EaSIeR predictions has been validated using independent datasets form four different cancer types with patients treated with anti-PD1 or anti-PDL1 therapy.
Maintained by Oscar Lapuente-Santana. Last updated 5 months ago.
geneexpressionsoftwaretranscriptionsystemsbiologypathwaysgenesetenrichmentimmunooncologyepigeneticsclassificationbiomedicalinformaticsregressionexperimenthubsoftware
4.20 score 16 scriptsbioc
MIRit:Integrate microRNA and gene expression to decipher pathway complexity
MIRit is an R package that provides several methods for investigating the relationships between miRNAs and genes in different biological conditions. In particular, MIRit allows to explore the functions of dysregulated miRNAs, and makes it possible to identify miRNA-gene regulatory axes that control biological pathways, thus enabling the users to unveil the complexity of miRNA biology. MIRit is an all-in-one framework that aims to help researchers in all the central aspects of an integrative miRNA-mRNA analyses, from differential expression analysis to network characterization.
Maintained by Jacopo Ronchi. Last updated 12 days ago.
softwaregeneregulationnetworkenrichmentnetworkinferenceepigeneticsfunctionalgenomicssystemsbiologynetworkpathwaysgeneexpressiondifferentialexpressionmirnamirna-mrna-interactionmirna-seqmirnaseq-analysiscpp
1 stars 4.18 score 2 scriptsbioc
IntEREst:Intron-Exon Retention Estimator
This package performs Intron-Exon Retention analysis on RNA-seq data (.bam files).
Maintained by Ali Oghabian. Last updated 3 days ago.
softwarealternativesplicingcoveragedifferentialsplicingsequencingrnaseqalignmentnormalizationdifferentialexpressionimmunooncology
4.16 score 12 scriptsbioc
TFHAZ:Transcription Factor High Accumulation Zones
It finds trascription factor (TF) high accumulation DNA zones, i.e., regions along the genome where there is a high presence of different transcription factors. Starting from a dataset containing the genomic positions of TF binding regions, for each base of the selected chromosome the accumulation of TFs is computed. Three different types of accumulation (TF, region and base accumulation) are available, together with the possibility of considering, in the single base accumulation computing, the TFs present not only in that single base, but also in its neighborhood, within a window of a given width. Two different methods for the search of TF high accumulation DNA zones, called "binding regions" and "overlaps", are available. In addition, some functions are provided in order to analyze, visualize and compare results obtained with different input parameters.
Maintained by Gaia Ceddia. Last updated 5 months ago.
softwarebiologicalquestiontranscriptionchipseqcoverage
4.00 score 2 scriptsbioc
systemPipeTools:Tools for data visualization
systemPipeTools package extends the widely used systemPipeR (SPR) workflow environment with an enhanced toolkit for data visualization, including utilities to automate the data visualizaton for analysis of differentially expressed genes (DEGs). systemPipeTools provides data transformation and data exploration functions via scatterplots, hierarchical clustering heatMaps, principal component analysis, multidimensional scaling, generalized principal components, t-Distributed Stochastic Neighbor embedding (t-SNE), and MA and volcano plots. All these utilities can be integrated with the modular design of the systemPipeR environment that allows users to easily substitute any of these features and/or custom with alternatives.
Maintained by Daniela Cassol. Last updated 5 months ago.
infrastructuredataimportsequencingqualitycontrolreportwritingexperimentaldesignclusteringdifferentialexpressionmultidimensionalscalingprincipalcomponent
4.00 score 4 scriptsbioc
octad:Open Cancer TherApeutic Discovery (OCTAD)
OCTAD provides a platform for virtually screening compounds targeting precise cancer patient groups. The essential idea is to identify drugs that reverse the gene expression signature of disease by tamping down over-expressed genes and stimulating weakly expressed ones. The package offers deep-learning based reference tissue selection, disease gene expression signature creation, pathway enrichment analysis, drug reversal potency scoring, cancer cell line selection, drug enrichment analysis and in silico hit validation. It currently covers ~20,000 patient tissue samples covering 50 cancer types, and expression profiles for ~12,000 distinct compounds.
Maintained by E. Chekalin. Last updated 5 months ago.
classificationgeneexpressionpharmacogeneticspharmacogenomicssoftwaregenesetenrichment
4.00 score 4 scriptsbioc
consensusDE:RNA-seq analysis using multiple algorithms
This package allows users to perform DE analysis using multiple algorithms. It seeks consensus from multiple methods. Currently it supports "Voom", "EdgeR" and "DESeq". It uses RUV-seq (optional) to remove unwanted sources of variation.
Maintained by Ashley J. Waardenberg. Last updated 5 months ago.
transcriptomicsmultiplecomparisonclusteringsequencingsoftware
4.00 score 10 scriptsbioc
microbiomeExplorer:Microbiome Exploration App
The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
Maintained by Janina Reeder. Last updated 5 months ago.
classificationclusteringgeneticvariabilitydifferentialexpressionmicrobiomemetagenomicsnormalizationvisualizationmultiplecomparisonsequencingsoftwareimmunooncology
4.00 score 8 scriptsmpallocc
autoGO:Auto-GO: Reproducible, Robust and High Quality Ontology Enrichment Visualizations
Auto-GO is a framework that enables automated, high quality Gene Ontology enrichment analysis visualizations. It also features a handy wrapper for Differential Expression analysis around the 'DESeq2' package described in Love et al. (2014) <doi:10.1186/s13059-014-0550-8>. The whole framework is structured in different, independent functions, in order to let the user decide which steps of the analysis to perform and which plot to produce.
Maintained by Fabio Ticconi. Last updated 1 months ago.
2 stars 3.90 scorebioc
terapadog:Translational Efficiency Regulation Analysis using the PADOG Method
This package performs a Gene Set Analysis with the approach adopted by PADOG on the genes that are reported as translationally regulated (ie. exhibit a significant change in TE) by the DeltaTE package. It can be used on its own to see the impact of translation regulation on gene sets, but it is also integrated as an additional analysis method within ReactomeGSA, where results are further contextualised in terms of pathways and directionality of the change.
Maintained by Gionmattia Carancini. Last updated 25 days ago.
riboseqtranscriptomicsgenesetenrichmentgeneregulationreactomesoftware
3.90 scorebioc
RegEnrich:Gene regulator enrichment analysis
This package is a pipeline to identify the key gene regulators in a biological process, for example in cell differentiation and in cell development after stimulation. There are four major steps in this pipeline: (1) differential expression analysis; (2) regulator-target network inference; (3) enrichment analysis; and (4) regulators scoring and ranking.
Maintained by Weiyang Tao. Last updated 5 months ago.
geneexpressiontranscriptomicsrnaseqtwochanneltranscriptiongenetargetnetworkenrichmentdifferentialexpressionnetworknetworkinferencegenesetenrichmentfunctionalprediction
3.82 score 22 scriptsbioc
DEsubs:DEsubs: an R package for flexible identification of differentially expressed subpathways using RNA-seq expression experiments
DEsubs is a network-based systems biology package that extracts disease-perturbed subpathways within a pathway network as recorded by RNA-seq experiments. It contains an extensive and customizable framework covering a broad range of operation modes at all stages of the subpathway analysis, enabling a case-specific approach. The operation modes refer to the pathway network construction and processing, the subpathway extraction, visualization and enrichment analysis with regard to various biological and pharmacological features. Its capabilities render it a tool-guide for both the modeler and experimentalist for the identification of more robust systems-level biomarkers for complex diseases.
Maintained by Aristidis G. Vrahatis. Last updated 5 months ago.
systemsbiologygraphandnetworkpathwayskegggeneexpressionnetworkenrichmentnetworkrnaseqdifferentialexpressionnormalizationimmunooncology
3.78 score 1 scriptsbioc
cypress:Cell-Type-Specific Power Assessment
CYPRESS is a cell-type-specific power tool. This package aims to perform power analysis for the cell-type-specific data. It calculates FDR, FDC, and power, under various study design parameters, including but not limited to sample size, and effect size. It takes the input of a SummarizeExperimental(SE) object with observed mixture data (feature by sample matrix), and the cell-type mixture proportions (sample by cell-type matrix). It can solve the cell-type mixture proportions from the reference free panel from TOAST and conduct tests to identify cell-type-specific differential expression (csDE) genes.
Maintained by Shilin Yu. Last updated 5 months ago.
softwaregeneexpressiondataimportrnaseqsequencing
1 stars 3.70 score 2 scriptsbioc
srnadiff:Finding differentially expressed unannotated genomic regions from RNA-seq data
srnadiff is a package that finds differently expressed regions from RNA-seq data at base-resolution level without relying on existing annotation. To do so, the package implements the identify-then-annotate methodology that builds on the idea of combining two pipelines approachs differential expressed regions detection and differential expression quantification. It reads BAM files as input, and outputs a list differentially regions, together with the adjusted p-values.
Maintained by Zytnicki Matthias. Last updated 3 months ago.
immunooncologygeneexpressioncoveragesmallrnaepigeneticsstatisticalmethodpreprocessingdifferentialexpressioncpp
3.70 score 3 scriptskelliejarcher
ordinalbayes:Bayesian Ordinal Regression for High-Dimensional Data
Provides a function for fitting various penalized Bayesian cumulative link ordinal response models when the number of parameters exceeds the sample size. These models have been described in Zhang and Archer (2021) <doi:10.1186/s12859-021-04432-w>.
Maintained by Kellie J. Archer. Last updated 3 years ago.
1 stars 3.70 score 1 scriptsbioc
pairedGSEA:Paired DGE and DGS analysis for gene set enrichment analysis
pairedGSEA makes it simple to run a paired Differential Gene Expression (DGE) and Differencital Gene Splicing (DGS) analysis. The package allows you to store intermediate results for further investiation, if desired. pairedGSEA comes with a wrapper function for running an Over-Representation Analysis (ORA) and functionalities for plotting the results.
Maintained by Søren Helweg Dam. Last updated 5 days ago.
differentialexpressionalternativesplicingdifferentialsplicinggeneexpressionimmunooncologygenesetenrichmentpathwaysrnaseqsoftwaretranscription
2 stars 3.60 scorebioc
deltaCaptureC:This Package Discovers Meso-scale Chromatin Remodeling from 3C Data
This package discovers meso-scale chromatin remodelling from 3C data. 3C data is local in nature. It givens interaction counts between restriction enzyme digestion fragments and a preferred 'viewpoint' region. By binning this data and using permutation testing, this package can test whether there are statistically significant changes in the interaction counts between the data from two cell types or two treatments.
Maintained by Michael Shapiro. Last updated 5 months ago.
biologicalquestionstatisticalmethod
3.48 score 1 scriptsbioc
vulcan:VirtUaL ChIP-Seq data Analysis using Networks
Vulcan (VirtUaL ChIP-Seq Analysis through Networks) is a package that interrogates gene regulatory networks to infer cofactors significantly enriched in a differential binding signature coming from ChIP-Seq data. In order to do so, our package combines strategies from different BioConductor packages: DESeq for data normalization, ChIPpeakAnno and DiffBind for annotation and definition of ChIP-Seq genomic peaks, csaw to define optimal peak width and viper for applying a regulatory network over a differential binding signature.
Maintained by Federico M. Giorgi. Last updated 5 months ago.
systemsbiologynetworkenrichmentgeneexpressionchipseq
3.38 score 12 scriptsbioc
rgsepd:Gene Set Enrichment / Projection Displays
R/GSEPD is a bioinformatics package for R to help disambiguate transcriptome samples (a matrix of RNA-Seq counts at transcript IDs) by automating differential expression (with DESeq2), then gene set enrichment (with GOSeq), and finally a N-dimensional projection to quantify in which ways each sample is like either treatment group.
Maintained by Karl Stamm. Last updated 5 months ago.
immunooncologysoftwaredifferentialexpressiongenesetenrichmentrnaseq
3.30 score 10 scriptsbioc
EBSEA:Exon Based Strategy for Expression Analysis of genes
Calculates differential expression of genes based on exon counts of genes obtained from RNA-seq sequencing data.
Maintained by Arfa Mehmood. Last updated 5 months ago.
softwaredifferentialexpressiongeneexpressionsequencing
3.30 score 4 scriptsbioc
Rmmquant:RNA-Seq multi-mapping Reads Quantification Tool
RNA-Seq is currently used routinely, and it provides accurate information on gene transcription. However, the method cannot accurately estimate duplicated genes expression. Several strategies have been previously used, but all of them provide biased results. With Rmmquant, if a read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes. Rmmquant is a drop-in replacement of the widely used tools findOverlaps and featureCounts that handles multi-mapping reads in an unabiased way.
Maintained by Zytnicki Matthias. Last updated 5 months ago.
geneexpressiontranscriptionzlibcpp
3.30 score 5 scriptsbioc
tRanslatome:Comparison between multiple levels of gene expression
Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots.
Maintained by Toma Tebaldi. Last updated 5 months ago.
cellbiologygeneregulationregulationgeneexpressiondifferentialexpressionmicroarrayhighthroughputsequencingqualitycontrolgomultiplecomparisonsbioinformatics
3.30 score 2 scriptsw123yu
sRNAGenetic:Analysis of sRNA Expression Changes During Plant Polyploidization
The most important function of the R package sRNAGenetic is the genetic effects analysis of miRNA after plant polyploidization via two methods, and at the same time, it provides various forms of graph related to data characteristics and expression analysis. In terms of two classification methods, one is the calculation of the additive (a) and dominant (d), the other is the evaluation of ELD (expression level domainance) by comparing the total expression of the miRNA in allotetraploids with the expression level in the parent species.
Maintained by Yu qing Wu. Last updated 3 years ago.
1 stars 2.70 score 1 scriptskechrislab
HeritSeq:Heritability of Gene Expression for Next-Generation Sequencing
Statistical framework to analyze heritability of gene expression based on next-generation sequencing data and simulating sequencing reads. Variance partition coefficients (VPC) are computed using linear mixed effects and generalized linear mixed effects models. Compound Poisson and negative binomial models are included. Reference: Rudra, Pratyaydipta, et al. "Model based heritability scores for high-throughput sequencing data." BMC bioinformatics 18.1 (2017): 143.
Maintained by W. Jenny Shi. Last updated 6 years ago.
2 stars 2.60 score 8 scriptsbmgfiasri
HEssRNA:Heritability-Based Estimation of Sample Size for RNA-Seq Data
Provides tools for estimating sample sizes primarily based on heritability, while also considering additional parameters such as statistical power and fold change. The package normalizes heritability values according to trait-specific heritability and classification to enhance accuracy in sample size estimation.
Maintained by Sarika Jaiswal. Last updated 3 months ago.
1.00 score