Showing 11 of total 11 results (show query)
giscience-fsu
sperrorest:Perform Spatial Error Estimation and Variable Importance Assessment
Implements spatial error estimation and permutation-based variable importance measures for predictive models using spatial cross-validation and spatial block bootstrap.
Maintained by Alexander Brenning. Last updated 2 years ago.
cross-validationmachine-learningspatial-statisticsspatio-temporal-modelingstatistical-learning
19 stars 6.46 score 46 scriptsfchamroukhi
samurais:Statistical Models for the Unsupervised Segmentation of Time-Series ('SaMUraiS')
Provides a variety of original and flexible user-friendly statistical latent variable models and unsupervised learning algorithms to segment and represent time-series data (univariate or multivariate), and more generally, longitudinal data, which include regime changes. 'samurais' is built upon the following packages, each of them is an autonomous time-series segmentation approach: Regression with Hidden Logistic Process ('RHLP'), Hidden Markov Model Regression ('HMMR'), Multivariate 'RHLP' ('MRHLP'), Multivariate 'HMMR' ('MHMMR'), Piece-Wise regression ('PWR'). For the advantages/differences of each of them, the user is referred to our mentioned paper references. These models are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?&tab=repositories&q=time-series&type=public&language=matlab>.
Maintained by Florian Lecocq. Last updated 5 years ago.
artificial-intelligencechange-point-detectiondata-sciencedynamic-programmingem-algorithmhidden-markov-modelshidden-process-regressionhuman-activity-recognitionlatent-variable-modelsmodel-selectionmultivariate-timeseriesnewton-raphsonpiecewise-regressionstatistical-inferencestatistical-learningtime-series-analysistime-series-clusteringopenblascpp
11 stars 6.14 score 28 scriptstechtonique
learningmachine:Machine Learning with Explanations and Uncertainty Quantification
Regression-based Machine Learning with explanations and uncertainty quantification.
Maintained by T. Moudiki. Last updated 4 months ago.
conformal-predictionmachine-learningmachine-learning-algorithmsmachinelearningstatistical-learninguncertainty-quantificationcpp
5 stars 5.53 score 21 scriptsfchamroukhi
meteorits:Mixture-of-Experts Modeling for Complex Non-Normal Distributions
Provides a unified mixture-of-experts (ME) modeling and estimation framework with several original and flexible ME models to model, cluster and classify heterogeneous data in many complex situations where the data are distributed according to non-normal, possibly skewed distributions, and when they might be corrupted by atypical observations. Mixtures-of-Experts models for complex and non-normal distributions ('meteorits') are originally introduced and written in 'Matlab' by Faicel Chamroukhi. The references are mainly the following ones. The references are mainly the following ones. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2009) <doi:10.1016/j.neunet.2009.06.040>. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F. (2015) <arXiv:1506.06707>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. (2016) <doi:10.1109/IJCNN.2016.7727580>. Chamroukhi F. (2016) <doi:10.1016/j.neunet.2016.03.002>. Chamroukhi F. (2017) <doi:10.1016/j.neucom.2017.05.044>.
Maintained by Florian Lecocq. Last updated 5 years ago.
artificial-intelligenceclusteringem-algorithmmixture-of-expertsneural-networksnon-linear-regressionpredictionrobust-learningskew-normalskew-tskewed-datastatistical-inferencestatistical-learningt-distributionunsupervised-learningopenblascpp
3 stars 5.12 score 11 scriptsfchamroukhi
flamingos:Functional Latent Data Models for Clustering Heterogeneous Curves ('FLaMingos')
Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011) <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>.
Maintained by Florian Lecocq. Last updated 5 years ago.
artificial-intelligencebaum-welch-algorithmcurve-clusteringdata-sciencedynamic-programmingem-algorithmfunctional-data-analysisfunctional-data-clusteringhidden-markov-modelshidden-process-regressionmixture-modelspiecewise-regressionstatistical-analysisstatistical-inferencestatistical-learningtime-series-analysisunsupervised-learningopenblascpp
6 stars 4.95 score 9 scriptstechtonique
ahead:Time Series Forecasting with uncertainty quantification
Univariate and multivariate time series forecasting with uncertainty quantification.
Maintained by T. Moudiki. Last updated 1 months ago.
forecastingmachine-learningpredictive-modelingstatistical-learningtime-seriestime-series-forecastinguncertainty-quantificationcpp
21 stars 4.63 score 51 scriptsclement-w
SIRthresholded:Sliced Inverse Regression with Thresholding
Implements a thresholded version of the Sliced Inverse Regression method, which allows to do variable selection.
Maintained by Clement Weinreich. Last updated 6 months ago.
dimensionality-reductioninverse-regressionstatistical-learningvariable-selection
4 stars 4.30 score 4 scriptstechtonique
bcn:Boosted Configuration Networks
Boosted Configuration (neural) Networks for supervised learning.
Maintained by T. Moudiki. Last updated 6 months ago.
machine-learningneural-networksstatistical-learningcpp
5 stars 4.00 score 4 scriptsnjtierney
broomstick:Convert Decision Tree Objects into Tidy Data Frames
Convert Decision Tree objects into tidy data frames, by using the framework laid out by the package broom, this means that decision tree output can be easily reshaped, porocessed, and combined with tools like 'dplyr', 'tidyr' and 'ggplot2'. Like the package broom, broomstick provides three S3 generics: tidy, to summarise decision tree specific features - tidy returns the variable importance table; augment adds columns to the original data such as predictions and residuals; and glance, which provides a one-row summary of model-level statistics.
Maintained by Nicholas Tierney. Last updated 1 years ago.
broomdecision-treesgbmmachine-learningrandomforestrpartstatistical-learning
29 stars 3.59 score 27 scriptsyuting1214
TensorTest2D:Fitting Second-Order Tensor Data
An implementation of fitting generalized linear models on second-order tensor type data. The functions within this package mainly focus on parameter estimation, including parameter coefficients and standard deviation.
Maintained by Mark Chen. Last updated 8 months ago.
1 stars 2.70 score 5 scriptstechtonique
nnetsauce:Randomized and Quasi-Randomized networks for Statistical/Machine Learning
Randomized and Quasi-Randomized networks for Statistical/Machine Learning
Maintained by T. Moudiki. Last updated 7 months ago.
deep-learningmachine-learningneural-networksrandomized-algorithmsstatistical-learning
2 stars 2.60 score 6 scripts