Showing 6 of total 6 results (show query)
mlr-org
mlr3pipelines:Preprocessing Operators and Pipelines for 'mlr3'
Dataflow programming toolkit that enriches 'mlr3' with a diverse set of pipelining operators ('PipeOps') that can be composed into graphs. Operations exist for data preprocessing, model fitting, and ensemble learning. Graphs can themselves be treated as 'mlr3' 'Learners' and can therefore be resampled, benchmarked, and tuned.
Maintained by Martin Binder. Last updated 26 days ago.
baggingdata-sciencedataflow-programmingensemble-learningmachine-learningmlr3pipelinespreprocessingstacking
141 stars 12.36 score 448 scripts 7 dependentstlverse
sl3:Pipelines for Machine Learning and Super Learning
A modern implementation of the Super Learner prediction algorithm, coupled with a general purpose framework for composing arbitrary pipelines for machine learning tasks.
Maintained by Jeremy Coyle. Last updated 5 months ago.
data-scienceensemble-learningensemble-modelmachine-learningmodel-selectionregressionstackingstatistics
100 stars 9.94 score 748 scripts 7 dependentsbusiness-science
modeltime.ensemble:Ensemble Algorithms for Time Series Forecasting with Modeltime
A 'modeltime' extension that implements time series ensemble forecasting methods including model averaging, weighted averaging, and stacking. These techniques are popular methods to improve forecast accuracy and stability.
Maintained by Matt Dancho. Last updated 9 months ago.
ensembleensemble-learningforecastforecastingmodeltimestackingstacking-ensembletidymodelstimetime-seriestimeseries
77 stars 8.30 score 143 scriptsvspinu
unnest:Unnest Hierarchical Data Structures
Fast flattening of hierarchical data structures (e.g. JSON, XML) into data.frames with a flexible spec language.
Maintained by Vitalie Spinu. Last updated 15 days ago.
data-frameflattened-dataflattened-jsonflatteninghierarchical-datastackingunnestingcpp
10 stars 5.00 score 5 scriptshaghish
autoEnsemble:Automated Stacked Ensemble Classifier for Severe Class Imbalance
A stacking solution for modeling imbalanced and severely skewed data. It automates the process of building homogeneous or heterogeneous stacked ensemble models by selecting "best" models according to different criteria. In doing so, it strategically searches for and selects diverse, high-performing base-learners to construct ensemble models optimized for skewed data. This package is particularly useful for addressing class imbalance in datasets, ensuring robust and effective model outcomes through advanced ensemble strategies which aim to stabilize the model, reduce its overfitting, and further improve its generalizability.
Maintained by E. F. Haghish. Last updated 9 days ago.
aialgorithmautomated-machine-learningautomlautoml-algorithmsensembleensemble-learningh2oh2oaimachine-learningmachinelearningmetalearningstack-ensemblestacked-ensemblesstacking
5 stars 4.42 score 21 scriptsepiforecasts
stackr:Create Mixture Models From Predictive Samples
The `stackr` package provides an easy way to combine predictions from individual time series or panel data models to an ensemble. `stackr` stacks (Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018) <doi:10.1214/17-BA1091>) Models according to the Continuous Ranked Probability Score (CRPS) (Tilmann Gneiting & Adrian E Raftery (2007) <doi:10.1198/016214506000001437>) over k-step ahead predictions. It is therefore especially suited for timeseries and panel data. A function for leave-one-out CRPS may be added in the future. Predictions need to be predictive distributions represented by predictive samples. Usually, these will be sets of posterior predictive simulation draws generated by an MCMC algorithm. Given some training data with true observed values as well as predictive samples generated from different models, `crps_weights` finds the optimal (in the sense of minimizing expected cross-validation predictive error) weights to form an ensemble from these models. Using these weights, `mixture_from_samples` can then provide samples from the optimal model mixture by drawing from the predictice samples of the individual models in the correct proportion. This gives a mixture model solely based on predictive samples and is in this regard superior to other ensembling techniques like Bayesian Model Averaging.
Maintained by Nikos Bosse. Last updated 5 months ago.
crpsensemblesforecastingstackingcpp
5 stars 4.34 score 44 scripts