Showing 27 of total 27 results (show query)
ddsjoberg
gtsummary:Presentation-Ready Data Summary and Analytic Result Tables
Creates presentation-ready tables summarizing data sets, regression models, and more. The code to create the tables is concise and highly customizable. Data frames can be summarized with any function, e.g. mean(), median(), even user-written functions. Regression models are summarized and include the reference rows for categorical variables. Common regression models, such as logistic regression and Cox proportional hazards regression, are automatically identified and the tables are pre-filled with appropriate column headers.
Maintained by Daniel D. Sjoberg. Last updated 4 days ago.
easy-to-usegthtml5regression-modelsreproducibilityreproducible-researchstatisticssummary-statisticssummary-tablestable1tableone
1.1k stars 17.02 score 8.2k scripts 15 dependentseasystats
parameters:Processing of Model Parameters
Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).
Maintained by Daniel Lüdecke. Last updated 8 days ago.
betabootstrapciconfidence-intervalsdata-reductioneasystatsfafeature-extractionfeature-reductionhacktoberfestparameterspcapvaluesregression-modelsrobust-statisticsstandardizestandardized-estimatesstatistical-models
454 stars 15.67 score 1.8k scripts 56 dependentsindrajeetpatil
ggstatsplot:'ggplot2' Based Plots with Statistical Details
Extension of 'ggplot2', 'ggstatsplot' creates graphics with details from statistical tests included in the plots themselves. It provides an easier syntax to generate information-rich plots for statistical analysis of continuous (violin plots, scatterplots, histograms, dot plots, dot-and-whisker plots) or categorical (pie and bar charts) data. Currently, it supports the most common types of statistical approaches and tests: parametric, nonparametric, robust, and Bayesian versions of t-test/ANOVA, correlation analyses, contingency table analysis, meta-analysis, and regression analyses. References: Patil (2021) <doi:10.21105/joss.03236>.
Maintained by Indrajeet Patil. Last updated 1 months ago.
bayes-factorsdatasciencedatavizeffect-sizeggplot-extensionhypothesis-testingnon-parametric-statisticsregression-modelsstatistical-analysis
2.1k stars 14.46 score 3.0k scripts 1 dependentseasystats
easystats:Framework for Easy Statistical Modeling, Visualization, and Reporting
A meta-package that installs and loads a set of packages from 'easystats' ecosystem in a single step. This collection of packages provide a unifying and consistent framework for statistical modeling, visualization, and reporting. Additionally, it provides articles targeted at instructors for teaching 'easystats', and a dashboard targeted at new R users for easily conducting statistical analysis by accessing summary results, model fit indices, and visualizations with minimal programming.
Maintained by Daniel Lüdecke. Last updated 25 days ago.
dataanalyticsdatascienceeasystatshacktoberfestmodelsperformance-metricsregression-modelsstatistics
1.1k stars 13.01 score 1.8k scripts 1 dependentsconfig-i1
greybox:Toolbox for Model Building and Forecasting
Implements functions and instruments for regression model building and its application to forecasting. The main scope of the package is in variables selection and models specification for cases of time series data. This includes promotional modelling, selection between different dynamic regressions with non-standard distributions of errors, selection based on cross validation, solutions to the fat regression model problem and more. Models developed in the package are tailored specifically for forecasting purposes. So as a results there are several methods that allow producing forecasts from these models and visualising them.
Maintained by Ivan Svetunkov. Last updated 15 days ago.
forecastingmodel-selectionmodel-selection-and-evaluationregressionregression-modelsstatisticscpp
30 stars 11.03 score 97 scripts 34 dependentsfsolt
dotwhisker:Dot-and-Whisker Plots of Regression Results
Create quick and easy dot-and-whisker plots of regression results. It takes as input either (1) a coefficient table in standard form or (2) one (or a list of) fitted model objects (of any type that has methods implemented in the 'parameters' package). It returns 'ggplot' objects that can be further customized using tools from the 'ggplot2' package. The package also includes helper functions for tasks such as rescaling coefficients or relabeling predictor variables. See more methodological discussion of the visualization and data management methods used in this package in Kastellec and Leoni (2007) <doi:10.1017/S1537592707072209> and Gelman (2008) <doi:10.1002/sim.3107>.
Maintained by Yue Hu. Last updated 6 months ago.
60 stars 10.14 score 680 scriptshongooi73
glmnetUtils:Utilities for 'Glmnet'
Provides a formula interface for the 'glmnet' package for elasticnet regression, a method for cross-validating the alpha parameter, and other quality-of-life tools.
Maintained by Hong Ooi. Last updated 2 years ago.
cross-validationglmnetlassoregression-models
65 stars 9.17 score 339 scripts 5 dependentsgraemeleehickey
joineRML:Joint Modelling of Multivariate Longitudinal Data and Time-to-Event Outcomes
Fits the joint model proposed by Henderson and colleagues (2000) <doi:10.1093/biostatistics/1.4.465>, but extended to the case of multiple continuous longitudinal measures. The time-to-event data is modelled using a Cox proportional hazards regression model with time-varying covariates. The multiple longitudinal outcomes are modelled using a multivariate version of the Laird and Ware linear mixed model. The association is captured by a multivariate latent Gaussian process. The model is estimated using a Monte Carlo Expectation Maximization algorithm. This project was funded by the Medical Research Council (Grant number MR/M013227/1).
Maintained by Graeme L. Hickey. Last updated 2 months ago.
armadillobiostatisticsclinical-trialscoxdynamicjoint-modelslongitudinal-datamultivariate-analysismultivariate-datamultivariate-longitudinal-datapredictionrcppregression-modelsstatisticssurvivalopenblascppopenmp
30 stars 8.93 score 146 scripts 1 dependentsmodeloriented
auditor:Model Audit - Verification, Validation, and Error Analysis
Provides an easy to use unified interface for creating validation plots for any model. The 'auditor' helps to avoid repetitive work consisting of writing code needed to create residual plots. This visualizations allow to asses and compare the goodness of fit, performance, and similarity of models.
Maintained by Alicja Gosiewska. Last updated 1 years ago.
classificationerror-analysisexplainable-artificial-intelligencemachine-learningmodel-validationregression-modelsresidualsxai
58 stars 8.76 score 94 scripts 2 dependentsbrian-j-smith
MachineShop:Machine Learning Models and Tools
Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.
Maintained by Brian J Smith. Last updated 7 months ago.
classification-modelsmachine-learningpredictive-modelingregression-modelssurvival-models
62 stars 7.95 score 121 scriptsmthulin
boot.pval:Bootstrap p-Values
Computation of bootstrap p-values through inversion of confidence intervals, including convenience functions for regression models and tests of location.
Maintained by Måns Thulin. Last updated 23 days ago.
bootstrapp-valueregression-models
4 stars 7.89 score 36 scripts 3 dependentssahirbhatnagar
casebase:Fitting Flexible Smooth-in-Time Hazards and Risk Functions via Logistic and Multinomial Regression
Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.
Maintained by Sahir Bhatnagar. Last updated 7 months ago.
competing-riskscox-regressionregression-modelssurvival-analysis
9 stars 7.16 score 94 scriptsnelson-gon
manymodelr:Build and Tune Several Models
Frequently one needs a convenient way to build and tune several models in one go.The goal is to provide a number of machine learning convenience functions. It provides the ability to build, tune and obtain predictions of several models in one function. The models are built using functions from 'caret' with easier to read syntax. Kuhn(2014) <doi:10.48550/arXiv.1405.6974>.
Maintained by Nelson Gonzabato. Last updated 9 days ago.
analysis-of-varianceanovacorrelationcorrelation-coefficientgeneralized-linear-modelsgradient-boosting-decision-treesknn-classificationlinear-modelslinear-regressionmachine-learningmissing-valuesmodelsr-programmingrandom-forest-algorithmregression-models
2 stars 5.78 score 50 scriptssestelo
npregfast:Nonparametric Estimation of Regression Models with Factor-by-Curve Interactions
A method for obtaining nonparametric estimates of regression models with or without factor-by-curve interactions using local polynomial kernel smoothers or splines. Additionally, a parametric model (allometric model) can be estimated.
Maintained by Marta Sestelo. Last updated 3 months ago.
allometricbarnaclecritical-pointscurve-interactionsfactor-by-curvefortraninteractionnonparametricregression-modelstesting
5 stars 5.73 score 89 scripts 2 dependentsguyabel
tidycat:Expand Tidy Output for Categorical Parameter Estimates
Create additional rows and columns on broom::tidy() output to allow for easier control on categorical parameter estimates.
Maintained by Guy J. Abel. Last updated 1 years ago.
data-visualizationdata-vizglmmodel-comparisonregression-analysisregression-modelsstatistical-analysisstatistical-modeling
4 stars 5.53 score 56 scripts 1 dependentscmusso86
recalibratiNN:Quantile Recalibration for Regression Models
Enables the diagnostics and enhancement of regression model calibration.It offers both global and local visualization tools for calibration diagnostics and provides one recalibration method: Torres R, Nott DJ, Sisson SA, Rodrigues T, Reis JG, Rodrigues GS (2024) <doi:10.48550/arXiv.2403.05756>. The method leverages on Probabilistic Integral Transform (PIT) values to both evaluate and perform the calibration of statistical models. For a more detailed description of the package, please refer to the bachelor's thesis available bellow.
Maintained by Carolina Musso. Last updated 2 months ago.
calibrationgaussian-modelsneural-networkprobabilityrecalibrationregression-models
7 stars 5.32 score 8 scriptsstopsack
risks:Estimate Risk Ratios and Risk Differences using Regression
Risk ratios and risk differences are estimated using regression models that allow for binary, categorical, and continuous exposures and confounders. Implemented are marginal standardization after fitting logistic models (g-computation) with delta-method and bootstrap standard errors, Miettinen's case-duplication approach (Schouten et al. 1993, <doi:10.1002/sim.4780121808>), log-binomial (Poisson) models with empirical variance (Zou 2004, <doi:10.1093/aje/kwh090>), binomial models with starting values from Poisson models (Spiegelman and Hertzmark 2005, <doi:10.1093/aje/kwi188>), and others.
Maintained by Konrad Stopsack. Last updated 9 days ago.
binomialbiostatisticsepidemiologyregression-models
5 stars 5.26 score 12 scriptsgdkrmr
DRR:Dimensionality Reduction via Regression
An Implementation of Dimensionality Reduction via Regression using Kernel Ridge Regression.
Maintained by Guido Kraemer. Last updated 2 years ago.
dimensionality-reductionkernel-methodsnon-linearregression-models
9 stars 5.24 score 8 scripts 1 dependentsjobnmadu
Dyn4cast:Dynamic Modeling and Machine Learning Environment
Estimates, predict and forecast dynamic models as well as Machine Learning metrics which assists in model selection for further analysis. The package also have capabilities to provide tools and metrics that are useful in machine learning and modeling. For example, there is quick summary, percent sign, Mallow's Cp tools and others. The ecosystem of this package is analysis of economic data for national development. The package is so far stable and has high reliability and efficiency as well as time-saving.
Maintained by Job Nmadu. Last updated 13 days ago.
data-scienceequal-lenght-forecastforecastingknotsmachine-learningnigeriapredictionregression-modelsspline-modelsstatisticstime-series
4 stars 5.03 score 38 scriptsfriendly
genridge:Generalized Ridge Trace Plots for Ridge Regression
The genridge package introduces generalizations of the standard univariate ridge trace plot used in ridge regression and related methods. These graphical methods show both bias (actually, shrinkage) and precision, by plotting the covariance ellipsoids of the estimated coefficients, rather than just the estimates themselves. 2D and 3D plotting methods are provided, both in the space of the predictor variables and in the transformed space of the PCA/SVD of the predictors.
Maintained by Michael Friendly. Last updated 4 months ago.
bias-variancegraphicsprincipal-component-analysisregression-modelsridge-regressionsingular-value-decomposition
4 stars 4.84 score 69 scriptsjared-fowler
prettyglm:Pretty Summaries of Generalized Linear Model Coefficients
One of the main advantages of using Generalised Linear Models is their interpretability. The goal of 'prettyglm' is to provide a set of functions which easily create beautiful coefficient summaries which can readily be shared and explained. 'prettyglm' helps users create coefficient summaries which include categorical base levels, variable importance and type III p.values. 'prettyglm' also creates beautiful relativity plots for categorical, continuous and splined coefficients.
Maintained by Jared Fowler. Last updated 1 years ago.
classificationclassification-modeldata-sciencedata-visualizationglmlinear-modelsregressionregression-analysisregression-modelregression-modelsstatistical-models
3 stars 4.73 score 36 scriptssfcheung
lmhelprs:Helper Functions for Linear Model Analysis
A collection of helper functions for multiple regression models fitted by lm(). Most of them are simple functions for simple tasks which can be done with coding, but may not be easy for occasional users of R. Most of the tasks addressed are those sometimes needed when using the 'manymome' package (Cheung and Cheung, 2023, <doi:10.3758/s13428-023-02224-z>) and 'stdmod' package (Cheung, Cheung, Lau, Hui, and Vong, 2022, <doi:10.1037/hea0001188>). However, they can also be used in other scenarios.
Maintained by Shu Fai Cheung. Last updated 1 months ago.
4.45 score 14 scriptsmrshoenel
mmb:Arbitrary Dependency Mixed Multivariate Bayesian Models
Supports Bayesian models with full and partial (hence arbitrary) dependencies between random variables. Discrete and continuous variables are supported, and conditional joint probabilities and probability densities are estimated using Kernel Density Estimation (KDE). The full general form, which implements an extension to Bayes' theorem, as well as the simple form, which is just a Bayesian network, both support regression through segmentation and KDE and estimation of probability or relative likelihood of discrete or continuous target random variables. This package also provides true statistical distance measures based on Bayesian models. Furthermore, these measures can be facilitated on neighborhood searches, and to estimate the similarity and distance between data points. Related work is by Bayes (1763) <doi:10.1098/rstl.1763.0053> and by Scutari (2010) <doi:10.18637/jss.v035.i03>.
Maintained by Sebastian Hönel. Last updated 4 years ago.
bayes-classifierkernel-density-estimationneighborhood-searchregression-models
3.70 score 5 scriptsdsy109
HoRM:Supplemental Functions and Datasets for "Handbook of Regression Methods"
Supplement for the book "Handbook of Regression Methods" by D. S. Young. Some datasets used in the book are included and documented. Wrapper functions are included that simplify the examples in the textbook, such as code for constructing a regressogram and expanding ANOVA tables to reflect the total sum of squares.
Maintained by Derek S. Young. Last updated 10 months ago.
regression-analysisregression-modelsshiny-apps
3.56 score 73 scriptsshixiangwang
regport:Regression Model Processing Port
Provides R6 classes, methods and utilities to construct, analyze, summarize, and visualize regression models.
Maintained by Shixiang Wang. Last updated 1 months ago.
batch-processingregression-models
6 stars 3.48 score 4 scriptsdiogoferrari
ceser:Cluster Estimated Standard Errors
Implementation of the Cluster Estimated Standard Errors (CESE) proposed in Jackson (2020) <DOI:10.1017/pan.2019.38> to compute clustered standard errors of linear coefficients in regression models with grouped data.
Maintained by Diogo Ferrari. Last updated 3 years ago.
clustered-standard-errorsregression-models
2 stars 3.00 score 5 scriptsfriendly
VisCollin:Visualizing Collinearity Diagnostics
Provides methods to calculate diagnostics for multicollinearity among predictors in a linear or generalized linear model. It also provides methods to visualize those diagnostics following Friendly & Kwan (2009), "Where’s Waldo: Visualizing Collinearity Diagnostics", <doi:10.1198/tast.2009.0012>. These include better tabular presentation of collinearity diagnostics that highlight the important numbers, a semi-graphic tableplot of the diagnostics to make warning and danger levels more salient, and a "collinearity biplot" of the smallest dimensions of predictor space, where collinearity is most apparent.
Maintained by Michael Friendly. Last updated 1 years ago.
biplotscollinearity-diagnosticsgraphicsregression-models
1 stars 2.78 score 12 scripts