Showing 8 of total 8 results (show query)
moviedo5
fda.usc:Functional Data Analysis and Utilities for Statistical Computing
Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.
Maintained by Manuel Oviedo de la Fuente. Last updated 5 months ago.
functional-data-analysisfortran
12 stars 9.72 score 560 scripts 22 dependentsiguanamarina
neuroSCC:Bridging Simultaneous Confidence Corridors and PET Neuroimaging
Tools for the structured processing of PET neuroimaging data in preparation for the estimation of Simultaneous Confidence Corridors (SCCs) for one-group, two-group, or single-patient vs group comparisons. The package facilitates PET image loading, data restructuring, integration into a Functional Data Analysis framework, contour extraction, identification of significant results, and performance evaluation. It bridges established packages (e.g., 'oro.nifti') with novel statistical methodologies (e.g., 'ImageSCC') and enables reproducible analysis pipelines, including comparison with Statistical Parametric Mapping ('SPM').
Maintained by Juan A. Arias Lopez. Last updated 7 days ago.
functional-data-analysisneuroimaging-analysispositron-emission-tomography
2 stars 5.38 scorefchamroukhi
flamingos:Functional Latent Data Models for Clustering Heterogeneous Curves ('FLaMingos')
Provides a variety of original and flexible user-friendly statistical latent variable models for the simultaneous clustering and segmentation of heterogeneous functional data (i.e time series, or more generally longitudinal data, fitted by unsupervised algorithms, including EM algorithms. Functional Latent Data Models for Clustering heterogeneous curves ('FLaMingos') are originally introduced and written in 'Matlab' by Faicel Chamroukhi <https://github.com/fchamroukhi?utf8=?&tab=repositories&q=mix&type=public&language=matlab>. The references are mainly the following ones. Chamroukhi F. (2010) <https://chamroukhi.com/FChamroukhi-PhD.pdf>. Chamroukhi F., Same A., Govaert, G. and Aknin P. (2010) <doi:10.1016/j.neucom.2009.12.023>. Chamroukhi F., Same A., Aknin P. and Govaert G. (2011) <doi:10.1109/IJCNN.2011.6033590>. Same A., Chamroukhi F., Govaert G. and Aknin, P. (2011) <doi:10.1007/s11634-011-0096-5>. Chamroukhi F., and Glotin H. (2012) <doi:10.1109/IJCNN.2012.6252818>. Chamroukhi F., Glotin H. and Same A. (2013) <doi:10.1016/j.neucom.2012.10.030>. Chamroukhi F. (2015) <https://chamroukhi.com/FChamroukhi-HDR.pdf>. Chamroukhi F. and Nguyen H-D. (2019) <doi:10.1002/widm.1298>.
Maintained by Florian Lecocq. Last updated 5 years ago.
artificial-intelligencebaum-welch-algorithmcurve-clusteringdata-sciencedynamic-programmingem-algorithmfunctional-data-analysisfunctional-data-clusteringhidden-markov-modelshidden-process-regressionmixture-modelspiecewise-regressionstatistical-analysisstatistical-inferencestatistical-learningtime-series-analysisunsupervised-learningopenblascpp
6 stars 4.95 score 9 scriptsegarpor
goffda:Goodness-of-Fit Tests for Functional Data
Implementation of several goodness-of-fit tests for functional data. Currently, mostly related with the functional linear model with functional/scalar response and functional/scalar predictor. The package allows for the replication of the data applications considered in García-Portugués, Álvarez-Liébana, Álvarez-Pérez and González-Manteiga (2021) <doi:10.1111/sjos.12486>.
Maintained by Eduardo García-Portugués. Last updated 1 years ago.
functional-data-analysisgoodness-of-fitreproducible-researchstatisticsopenblascpp
10 stars 4.76 score 19 scripts 1 dependentsmodal-inria
cfda:Categorical Functional Data Analysis
Package for the analysis of categorical functional data. The main purpose is to compute an encoding (real functional variable) for each state <doi:10.3390/math9233074>. It also provides functions to perform basic statistical analysis on categorical functional data.
Maintained by Quentin Grimonprez. Last updated 2 months ago.
categorical-datafunctional-data-analysishacktoberfest
4 stars 4.60 score 3 scriptsvinhtantran
puls:Partitioning Using Local Subregions
A method of clustering functional data using subregion information of the curves. It is intended to supplement the 'fda' and 'fda.usc' packages in functional data object clustering. It also facilitates the printing and plotting of the results in a tree format and limits the partitioning candidates into a specific set of subregions.
Maintained by Tan Tran. Last updated 4 years ago.
clusteringfunctional-data-analysismonothetic
3.70 score 4 scriptsjavzapata
fgm:Partial Separability and Functional Graphical Models for Multivariate Gaussian Processes
Estimates a functional graphical model and a partially separable KL decomposition for a multivariate Gaussian process.
Maintained by Javier Zapata. Last updated 4 years ago.
covariance-estimationfunctional-data-analysisgaussian-processesgraphical-modelskarhunen-loeveneuroimaging-dataneuroscience
4 stars 3.30 score 8 scriptsaefdz
localFDA:Localization Processes for Functional Data Analysis
Implementation of a theoretically supported alternative to k-nearest neighbors for functional data to solve problems of estimating unobserved segments of a partially observed functional data sample, functional classification and outlier detection. The approximating neighbor curves are piecewise functions built from a functional sample. Instead of a distance on a function space we use a locally defined distance function that satisfies stabilization criteria. The package allows the implementation of the methodology and the replication of the results in Elías, A., Jiménez, R. and Yukich, J. (2020) <arXiv:2007.16059>.
Maintained by Antonio Elías. Last updated 4 years ago.
classificationfunctional-data-analysisimputationoutliers-detection
2.70 score