Showing 107 of total 107 results (show query)

bioc

bumphunter:Bump Hunter

Tools for finding bumps in genomic data

Maintained by Tamilselvi Guharaj. Last updated 5 months ago.

dnamethylationepigeneticsinfrastructuremultiplecomparisonimmunooncology

16 stars 11.61 score 210 scripts 43 dependents

bioc

pathwayPCA:Integrative Pathway Analysis with Modern PCA Methodology and Gene Selection

pathwayPCA is an integrative analysis tool that implements the principal component analysis (PCA) based pathway analysis approaches described in Chen et al. (2008), Chen et al. (2010), and Chen (2011). pathwayPCA allows users to: (1) Test pathway association with binary, continuous, or survival phenotypes. (2) Extract relevant genes in the pathways using the SuperPCA and AES-PCA approaches. (3) Compute principal components (PCs) based on the selected genes. These estimated latent variables represent pathway activities for individual subjects, which can then be used to perform integrative pathway analysis, such as multi-omics analysis. (4) Extract relevant genes that drive pathway significance as well as data corresponding to these relevant genes for additional in-depth analysis. (5) Perform analyses with enhanced computational efficiency with parallel computing and enhanced data safety with S4-class data objects. (6) Analyze studies with complex experimental designs, with multiple covariates, and with interaction effects, e.g., testing whether pathway association with clinical phenotype is different between male and female subjects. Citations: Chen et al. (2008) <https://doi.org/10.1093/bioinformatics/btn458>; Chen et al. (2010) <https://doi.org/10.1002/gepi.20532>; and Chen (2011) <https://doi.org/10.2202/1544-6115.1697>.

Maintained by Gabriel Odom. Last updated 5 months ago.

copynumbervariationdnamethylationgeneexpressionsnptranscriptiongenepredictiongenesetenrichmentgenesignalinggenetargetgenomewideassociationgenomicvariationcellbiologyepigeneticsfunctionalgenomicsgeneticslipidomicsmetabolomicsproteomicssystemsbiologytranscriptomicsclassificationdimensionreductionfeatureextractionprincipalcomponentregressionsurvivalmultiplecomparisonpathways

11 stars 7.74 score 42 scripts

bioc

MoonlightR:Identify oncogenes and tumor suppressor genes from omics data

Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.

Maintained by Matteo Tiberti. Last updated 5 months ago.

dnamethylationdifferentialmethylationgeneregulationgeneexpressionmethylationarraydifferentialexpressionpathwaysnetworksurvivalgenesetenrichmentnetworkenrichment

17 stars 6.57 score

bioc

Moonlight2R:Identify oncogenes and tumor suppressor genes from omics data

The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.

Maintained by Matteo Tiberti. Last updated 2 months ago.

dnamethylationdifferentialmethylationgeneregulationgeneexpressionmethylationarraydifferentialexpressionpathwaysnetworksurvivalgenesetenrichmentnetworkenrichment

5 stars 6.41 score 43 scripts