Showing 2 of total 2 results (show query)
philips-software
latrend:A Framework for Clustering Longitudinal Data
A framework for clustering longitudinal datasets in a standardized way. The package provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease. The 'akmedoids' package is available from <https://github.com/MAnalytics/akmedoids>.
Maintained by Niek Den Teuling. Last updated 3 months ago.
cluster-analysisclustering-evaluationclustering-methodsdata-sciencelongitudinal-clusteringlongitudinal-datamixture-modelstime-series-analysis
30 stars 6.77 score 26 scriptszcebeci
odetector:Outlier Detection Using Partitioning Clustering Algorithms
An object is called "outlier" if it remarkably deviates from the other objects in a data set. Outlier detection is the process to find outliers by using the methods that are based on distance measures, clustering and spatial methods (Ben-Gal, 2005 <ISBN 0-387-24435-2>). It is one of the intensively studied research topics for identification of novelties, frauds, anomalies, deviations or exceptions in addition to its use for outlier removing in data processing. This package provides the implementations of some novel approaches to detect the outliers based on typicality degrees that are obtained with the soft partitioning clustering algorithms such as Fuzzy C-means and its variants.
Maintained by Zeynel Cebeci. Last updated 2 years ago.
anomaly-detectioncluster-analysisclusteringclustering-methodsdatadatapreparationdatapreprocessingexception-handlingfcmfraud-detectionfuzzy-clusteringnovelty-detectionoutlier-detectionoutlier-removaloutlierspartitioningpcmsurprise-exploration
3.70 score 4 scripts