Showing 200 of total 951 results (show query)

bbolker

margins:Marginal Effects for Model Objects

An R port of the margins command from 'Stata', which can be used to calculate marginal (or partial) effects from model objects.

Maintained by Ben Bolker. Last updated 8 months ago.

83.7 match 2 stars 9.85 score 956 scripts 1 dependents

anestistouloumis

SimCorMultRes:Simulates Correlated Multinomial Responses

Simulates correlated multinomial responses conditional on a marginal model specification.

Maintained by Anestis Touloumis. Last updated 12 months ago.

binarylongitudinal-studiesmultinomialsimulation

13.9 match 7 stars 6.04 score 26 scripts 2 dependents

r-forge

car:Companion to Applied Regression

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, 2019.

Maintained by John Fox. Last updated 5 months ago.

5.4 match 15.29 score 43k scripts 901 dependents

merliseclyde

BAS:Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling

Package for Bayesian Variable Selection and Model Averaging in linear models and generalized linear models using stochastic or deterministic sampling without replacement from posterior distributions. Prior distributions on coefficients are from Zellner's g-prior or mixtures of g-priors corresponding to the Zellner-Siow Cauchy Priors or the mixture of g-priors from Liang et al (2008) <DOI:10.1198/016214507000001337> for linear models or mixtures of g-priors from Li and Clyde (2019) <DOI:10.1080/01621459.2018.1469992> in generalized linear models. Other model selection criteria include AIC, BIC and Empirical Bayes estimates of g. Sampling probabilities may be updated based on the sampled models using sampling w/out replacement or an efficient MCMC algorithm which samples models using a tree structure of the model space as an efficient hash table. See Clyde, Ghosh and Littman (2010) <DOI:10.1198/jcgs.2010.09049> for details on the sampling algorithms. Uniform priors over all models or beta-binomial prior distributions on model size are allowed, and for large p truncated priors on the model space may be used to enforce sampling models that are full rank. The user may force variables to always be included in addition to imposing constraints that higher order interactions are included only if their parents are included in the model. This material is based upon work supported by the National Science Foundation under Division of Mathematical Sciences grant 1106891. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Maintained by Merlise Clyde. Last updated 4 months ago.

bayesianbayesian-inferencegeneralized-linear-modelslinear-regressionlogistic-regressionmcmcmodel-selectionpoisson-regressionpredictive-modelingregressionvariable-selectionfortranopenblas

6.3 match 44 stars 10.81 score 420 scripts 3 dependents

esteban-alfaro

adabag:Applies Multiclass AdaBoost.M1, SAMME and Bagging

It implements Freund and Schapire's Adaboost.M1 algorithm and Breiman's Bagging algorithm using classification trees as individual classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross validation estimation of the error can be done. Since version 2.0 the function margins() is available to calculate the margins for these classifiers. Also a higher flexibility is achieved giving access to the rpart.control() argument of 'rpart'. Four important new features were introduced on version 3.0, AdaBoost-SAMME (Zhu et al., 2009) is implemented and a new function errorevol() shows the error of the ensembles as a function of the number of iterations. In addition, the ensembles can be pruned using the option 'newmfinal' in the predict.bagging() and predict.boosting() functions and the posterior probability of each class for observations can be obtained. Version 3.1 modifies the relative importance measure to take into account the gain of the Gini index given by a variable in each tree and the weights of these trees. Version 4.0 includes the margin-based ordered aggregation for Bagging pruning (Guo and Boukir, 2013) and a function to auto prune the 'rpart' tree. Moreover, three new plots are also available importanceplot(), plot.errorevol() and plot.margins(). Version 4.1 allows to predict on unlabeled data. Version 4.2 includes the parallel computation option for some of the functions. Version 5.0 includes the Boosting and Bagging algorithms for label ranking (Albano, Sciandra and Plaia, 2023).

Maintained by Esteban Alfaro. Last updated 2 years ago.

10.5 match 5 stars 6.27 score 720 scripts 6 dependents

pettermostad

lestat:A Package for Learning Statistics

Some simple objects and functions to do statistics using linear models and a Bayesian framework.

Maintained by Petter Mostad. Last updated 7 years ago.

27.5 match 2.28 score 64 scripts 1 dependents

dmurdoch

plotrix:Various Plotting Functions

Lots of plots, various labeling, axis and color scaling functions. The author/maintainer died in September 2023.

Maintained by Duncan Murdoch. Last updated 1 years ago.

5.3 match 5 stars 11.31 score 9.2k scripts 361 dependents

cran

bayesm:Bayesian Inference for Marketing/Micro-Econometrics

Covers many important models used in marketing and micro-econometrics applications. The package includes: Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity (as in Rossi et al, JASA (01)), Bayesian Analysis of Aggregate Random Coefficient Logit Models as in BLP (see Jiang, Manchanda, Rossi 2009) For further reference, consult our book, Bayesian Statistics and Marketing by Rossi, Allenby and McCulloch (Wiley first edition 2005 and second forthcoming) and Bayesian Non- and Semi-Parametric Methods and Applications (Princeton U Press 2014).

Maintained by Peter Rossi. Last updated 1 years ago.

openblascpp

6.9 match 20 stars 8.20 score 322 scripts 43 dependents

briencj

asremlPlus:Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences

Assists in automating the selection of terms to include in mixed models when 'asreml' is used to fit the models. Procedures are available for choosing models that conform to the hierarchy or marginality principle, for fitting and choosing between two-dimensional spatial models using correlation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate differences between and to plot predictions obtained using any model fitting function. The content falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction production and presentation functions, (vi) Response transformation functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions (for further details see 'asremlPlus-package' in help). The 'asreml' package provides a computationally efficient algorithm for fitting a wide range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and a license for it can be purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for functions that are methods for 'alldiffs' and 'data.frame' objects. The package 'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

Maintained by Chris Brien. Last updated 28 days ago.

asremlmixed-models

5.3 match 19 stars 9.34 score 200 scripts

lcrawlab

mvMAPIT:Multivariate Genome Wide Marginal Epistasis Test

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the 'multivariate MArginal ePIstasis Test' ('mvMAPIT') – a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact – thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed 'mvMAPIT' builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate 'mvMAPIT' as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.

Maintained by Julian Stamp. Last updated 5 months ago.

cppepistasisepistasis-analysisgwasgwas-toolslinear-mixed-modelsmapitmvmapitvariance-componentsopenblascppopenmp

6.7 match 11 stars 6.90 score 17 scripts 1 dependents

fauvernierma

survPen:Multidimensional Penalized Splines for (Excess) Hazard Models, Relative Mortality Ratio Models and Marginal Intensity Models

Fits (excess) hazard, relative mortality ratio or marginal intensity models with multidimensional penalized splines allowing for time-dependent effects, non-linear effects and interactions between several continuous covariates. In survival and net survival analysis, in addition to modelling the effect of time (via the baseline hazard), one has often to deal with several continuous covariates and model their functional forms, their time-dependent effects, and their interactions. Model specification becomes therefore a complex problem and penalized regression splines represent an appealing solution to that problem as splines offer the required flexibility while penalization limits overfitting issues. Current implementations of penalized survival models can be slow or unstable and sometimes lack some key features like taking into account expected mortality to provide net survival and excess hazard estimates. In contrast, survPen provides an automated, fast, and stable implementation (thanks to explicit calculation of the derivatives of the likelihood) and offers a unified framework for multidimensional penalized hazard and excess hazard models. Later versions (>2.0.0) include penalized models for relative mortality ratio, and marginal intensity in recurrent event setting. survPen may be of interest to those who 1) analyse any kind of time-to-event data: mortality, disease relapse, machinery breakdown, unemployment, etc 2) wish to describe the associated hazard and to understand which predictors impact its dynamics, 3) wish to model the relative mortality ratio between a cohort and a reference population, 4) wish to describe the marginal intensity for recurrent event data. See Fauvernier et al. (2019a) <doi:10.21105/joss.01434> for an overview of the package and Fauvernier et al. (2019b) <doi:10.1111/rssc.12368> for the method.

Maintained by Mathieu Fauvernier. Last updated 3 months ago.

cpp

6.6 match 12 stars 6.82 score 85 scripts 1 dependents

hadley

reshape:Flexibly Reshape Data

Flexibly restructure and aggregate data using just two functions: melt and cast.

Maintained by Hadley Wickham. Last updated 3 years ago.

4.5 match 9.83 score 21k scripts 231 dependents

rwoldford

eikosograms:The Picture of Probability

An eikosogram (ancient Greek for probability picture) divides the unit square into rectangular regions whose areas, sides, and widths, represent various probabilities associated with the values of one or more categorical variates. Rectangle areas are joint probabilities, widths are always marginal (though possibly joint margins, i.e. marginal joint distributions of two or more variates), and heights of rectangles are always conditional probabilities. Eikosograms embed the rules of probability and are useful for introducing elementary probability theory, including axioms, marginal, conditional, and joint probabilities, and their relationships (including Bayes theorem as a completely trivial consequence). They are markedly superior to Venn diagrams for this purpose, especially in distinguishing probabilistic independence, mutually exclusive events, coincident events, and associations. They also are useful for identifying and understanding conditional independence structure. As data analysis tools, eikosograms display categorical data in a manner similar to Mosaic plots, especially when only two variates are involved (the only case in which they are essentially identical, though eikosograms purposely disallow spacing between rectangles). Unlike Mosaic plots, eikosograms do not alternate axes as each new categorical variate (beyond two) is introduced. Instead, only one categorical variate, designated the "response", presents on the vertical axis and all others, designated the "conditioning" variates, appear on the horizontal. In this way, conditional probability appears only as height and marginal probabilities as widths. The eikosogram is therefore much better suited to a response model analysis (e.g. logistic model) than is a Mosaic plot. Mosaic plots are better suited to log-linear style modelling as in discrete multivariate analysis. Of course, eikosograms are also suited to discrete multivariate analysis with each variate in turn appearing as the response. This makes it better suited than Mosaic plots to discrete graphical models based on conditional independence graphs (i.e. "Bayesian Networks" or "BayesNets"). The eikosogram and its superiority to Venn diagrams in teaching probability is described in W.H. Cherry and R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/paper.pdf>, its value in exploring conditional independence structure and relation to graphical and log-linear models is described in R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/independence/paper.pdf>, and a number of problems, puzzles, and paradoxes that are easily explained with eikosograms are given in R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/examples/paper.pdf>.

Maintained by Wayne Oldford. Last updated 6 years ago.

8.2 match 4 stars 4.92 score 14 scripts

jkcshea

ivmte:Instrumental Variables: Extrapolation by Marginal Treatment Effects

The marginal treatment effect was introduced by Heckman and Vytlacil (2005) <doi:10.1111/j.1468-0262.2005.00594.x> to provide a choice-theoretic interpretation to instrumental variables models that maintain the monotonicity condition of Imbens and Angrist (1994) <doi:10.2307/2951620>. This interpretation can be used to extrapolate from the compliers to estimate treatment effects for other subpopulations. This package provides a flexible set of methods for conducting this extrapolation. It allows for parametric or nonparametric sieve estimation, and allows the user to maintain shape restrictions such as monotonicity. The package operates in the general framework developed by Mogstad, Santos and Torgovitsky (2018) <doi:10.3982/ECTA15463>, and accommodates either point identification or partial identification (bounds). In the partially identified case, bounds are computed using either linear programming or quadratically constrained quadratic programming. Support for four solvers is provided. Gurobi and the Gurobi R API can be obtained from <http://www.gurobi.com/index>. CPLEX can be obtained from <https://www.ibm.com/analytics/cplex-optimizer>. CPLEX R APIs 'Rcplex' and 'cplexAPI' are available from CRAN. MOSEK and the MOSEK R API can be obtained from <https://www.mosek.com/>. The lp_solve library is freely available from <http://lpsolve.sourceforge.net/5.5/>, and is included when installing its API 'lpSolveAPI', which is available from CRAN.

Maintained by Joshua Shea. Last updated 7 months ago.

7.0 match 18 stars 5.33 score 30 scripts

crisvarin

gcmr:Gaussian Copula Marginal Regression

Likelihood inference in Gaussian copula marginal regression models.

Maintained by Cristiano Varin. Last updated 3 years ago.

20.3 match 3 stars 1.82 score 22 scripts

alanarnholt

BSDA:Basic Statistics and Data Analysis

Data sets for book "Basic Statistics and Data Analysis" by Larry J. Kitchens.

Maintained by Alan T. Arnholt. Last updated 2 years ago.

3.8 match 7 stars 9.11 score 1.3k scripts 6 dependents

hadley

reshape2:Flexibly Reshape Data: A Reboot of the Reshape Package

Flexibly restructure and aggregate data using just two functions: melt and 'dcast' (or 'acast').

Maintained by Hadley Wickham. Last updated 4 years ago.

cpp

1.9 match 210 stars 17.19 score 94k scripts 2.0k dependents

laplacesdemonr

LaplacesDemon:Complete Environment for Bayesian Inference

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Maintained by Henrik Singmann. Last updated 12 months ago.

2.0 match 93 stars 13.45 score 1.8k scripts 60 dependents