Showing 14 of total 14 results (show query)
bioc
limma:Linear Models for Microarray and Omics Data
Data analysis, linear models and differential expression for omics data.
Maintained by Gordon Smyth. Last updated 11 days ago.
exonarraygeneexpressiontranscriptionalternativesplicingdifferentialexpressiondifferentialsplicinggenesetenrichmentdataimportbayesianclusteringregressiontimecoursemicroarraymicrornaarraymrnamicroarrayonechannelproprietaryplatformstwochannelsequencingrnaseqbatcheffectmultiplecomparisonnormalizationpreprocessingqualitycontrolbiomedicalinformaticscellbiologycheminformaticsepigeneticsfunctionalgenomicsgeneticsimmunooncologymetabolomicsproteomicssystemsbiologytranscriptomics
13.81 score 16k scripts 586 dependentsprojectmosaic
mosaic:Project MOSAIC Statistics and Mathematics Teaching Utilities
Data sets and utilities from Project MOSAIC (<http://www.mosaic-web.org>) used to teach mathematics, statistics, computation and modeling. Funded by the NSF, Project MOSAIC is a community of educators working to tie together aspects of quantitative work that students in science, technology, engineering and mathematics will need in their professional lives, but which are usually taught in isolation, if at all.
Maintained by Randall Pruim. Last updated 1 years ago.
93 stars 13.32 score 7.2k scripts 7 dependentsasardaes
dtwclust:Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance
Time series clustering along with optimized techniques related to the Dynamic Time Warping distance and its corresponding lower bounds. Implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole clustering are available. Functionality can be easily extended with custom distance measures and centroid definitions. Implementations of DTW barycenter averaging, a distance based on global alignment kernels, and the soft-DTW distance and centroid routines are also provided. All included distance functions have custom loops optimized for the calculation of cross-distance matrices, including parallelization support. Several cluster validity indices are included.
Maintained by Alexis Sarda. Last updated 8 months ago.
clusteringdtwtime-seriesopenblascpp
262 stars 12.35 score 406 scripts 14 dependentsatsa-es
MARSS:Multivariate Autoregressive State-Space Modeling
The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate autoregressive state-space (MARSS) models, including partially deterministic models. MARSS models are a class of dynamic linear model (DLM) and vector autoregressive model (VAR) model. Fitting available via Expectation-Maximization (EM), BFGS (using optim), and 'TMB' (using the 'marssTMB' companion package). Functions are provided for parametric and innovations bootstrapping, Kalman filtering and smoothing, model selection criteria including bootstrap AICb, confidences intervals via the Hessian approximation or bootstrapping, and all conditional residual types. See the user guide for examples of dynamic factor analysis, dynamic linear models, outlier and shock detection, and multivariate AR-p models. Online workshops (lectures, eBook, and computer labs) at <https://atsa-es.github.io/>.
Maintained by Elizabeth Eli Holmes. Last updated 1 years ago.
multivariate-timeseriesstate-space-modelsstatisticstime-series
52 stars 10.34 score 596 scripts 3 dependentspoissonconsulting
extras:Helper Functions for Bayesian Analyses
Functions to 'numericise' 'R' objects (coerce to numeric objects), summarise 'MCMC' (Monte Carlo Markov Chain) samples and calculate deviance residuals as well as 'R' translations of some 'BUGS' (Bayesian Using Gibbs Sampling), 'JAGS' (Just Another Gibbs Sampler), 'STAN' and 'TMB' (Template Model Builder) functions.
Maintained by Nicole Hill. Last updated 2 months ago.
9 stars 8.49 score 15 scripts 16 dependentsoobianom
quickcode:Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to improve your scripts. Improve the quality and reproducibility of 'R' scripts.
Maintained by Obinna Obianom. Last updated 27 days ago.
5 stars 7.76 score 7 scripts 6 dependentspoissonconsulting
mcmcr:Manipulate MCMC Samples
Functions and classes to store, manipulate and summarise Monte Carlo Markov Chain (MCMC) samples. For more information see Brooks et al. (2011) <isbn:978-1-4200-7941-8>.
Maintained by Joe Thorley. Last updated 2 months ago.
17 stars 7.66 score 111 scripts 10 dependentspoissonconsulting
nlist:Lists of Numeric Atomic Objects
Create and manipulate numeric list ('nlist') objects. An 'nlist' is an S3 list of uniquely named numeric objects. An numeric object is an integer or double vector, matrix or array. An 'nlists' object is a S3 class list of 'nlist' objects with the same names, dimensionalities and typeofs. Numeric list objects are of interest because they are the raw data inputs for analytic engines such as 'JAGS', 'STAN' and 'TMB'. Numeric lists objects, which are useful for storing multiple realizations of of simulated data sets, can be converted to coda::mcmc and coda::mcmc.list objects.
Maintained by Joe Thorley. Last updated 2 months ago.
6 stars 7.23 score 13 scripts 12 dependentsstamats
MKdescr:Descriptive Statistics
Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), <doi:10.2307/1268758>), robust coefficient of variation (CV) (Arachchige et al. (2019), <arXiv:1907.01110>), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for 'ggplot2' (Wickham (2016), ISBN:978-3-319-24277-4).
Maintained by Matthias Kohl. Last updated 1 years ago.
3 stars 6.02 score 47 scripts 5 dependentsbioc
autonomics:Unified Statistical Modeling of Omics Data
This package unifies access to Statistal Modeling of Omics Data. Across linear modeling engines (lm, lme, lmer, limma, and wilcoxon). Across coding systems (treatment, difference, deviation, etc). Across model formulae (with/without intercept, random effect, interaction or nesting). Across omics platforms (microarray, rnaseq, msproteomics, affinity proteomics, metabolomics). Across projection methods (pca, pls, sma, lda, spls, opls). Across clustering methods (hclust, pam, cmeans). It provides a fast enrichment analysis implementation. And an intuitive contrastogram visualisation to summarize contrast effects in complex designs.
Maintained by Aditya Bhagwat. Last updated 2 months ago.
softwaredataimportpreprocessingdimensionreductionprincipalcomponentregressiondifferentialexpressiongenesetenrichmenttranscriptomicstranscriptiongeneexpressionrnaseqmicroarrayproteomicsmetabolomicsmassspectrometry
5.89 score 5 scriptsrezamoammadi
liver:"Eating the Liver of Data Science"
Provides a suite of helper functions and a collection of datasets used in the book <https://uncovering-data-science.netlify.app>. It is designed to make data science techniques accessible to individuals with minimal coding experience. Inspired by an ancient Persian idiom, the package likens this learning process to "eating the liver of data science," symbolizing deep and immersive engagement with the field.
Maintained by Reza Mohammadi. Last updated 12 days ago.
4.13 score 67 scriptsamlinz
OTUtable:North Temperate Lakes - Microbial Observatory 16S Time Series Data and Functions
Analyses of OTU tables produced by 16S rRNA gene amplicon sequencing, as well as example data. It contains the data and scripts used in the paper Linz, et al. (2017) "Bacterial community composition and dynamics spanning five years in freshwater bog lakes," <doi: 10.1128/mSphere.00169-17>.
Maintained by Alexandra Linz. Last updated 7 years ago.
2.20 score 53 scriptsarissyntakas
GeneScoreR:Gene Scoring from Count Tables
Provides two methods for automatic calculation of gene scores from gene count tables: the z-score method, which requires a table of samples being scored and a count table with control samples, and the geometric mean method, which does not rely on control samples. The mathematical methods implemented are described by Kim et al. (2018) <doi:10.1089/jir.2017.0127>.
Maintained by Aris Syntakas. Last updated 5 months ago.
1.00 score