Showing 2 of total 2 results (show query)
r-forge
pcalg:Methods for Graphical Models and Causal Inference
Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
Maintained by Markus Kalisch. Last updated 7 months ago.
7.30 score 700 scripts 19 dependentsbioc
npGSEA:Permutation approximation methods for gene set enrichment analysis (non-permutation GSEA)
Current gene set enrichment methods rely upon permutations for inference. These approaches are computationally expensive and have minimum achievable p-values based on the number of permutations, not on the actual observed statistics. We have derived three parametric approximations to the permutation distributions of two gene set enrichment test statistics. We are able to reduce the computational burden and granularity issues of permutation testing with our method, which is implemented in this package. npGSEA calculates gene set enrichment statistics and p-values without the computational cost of permutations. It is applicable in settings where one or many gene sets are of interest. There are also built-in plotting functions to help users visualize results.
Maintained by Jessica Larson. Last updated 5 months ago.
genesetenrichmentmicroarraystatisticalmethodpathways
3.30 score 4 scripts