Showing 5 of total 5 results (show query)
cran
compositions:Compositional Data Analysis
Provides functions for the consistent analysis of compositional data (e.g. portions of substances) and positive numbers (e.g. concentrations) in the way proposed by J. Aitchison and V. Pawlowsky-Glahn.
Maintained by K. Gerald van den Boogaart. Last updated 1 years ago.
1 stars 6.35 score 36 dependentstesselle
nexus:Sourcing Archaeological Materials by Chemical Composition
Exploration and analysis of compositional data in the framework of Aitchison (1986, ISBN: 978-94-010-8324-9). This package provides tools for chemical fingerprinting and source tracking of ancient materials.
Maintained by Nicolas Frerebeau. Last updated 25 days ago.
archaeologyarchaeological-sciencearchaeometrycompositional-dataprovenance-studies
5.21 score 26 scripts 1 dependentsbioc
geva:Gene Expression Variation Analysis (GEVA)
Statistic methods to evaluate variations of differential expression (DE) between multiple biological conditions. It takes into account the fold-changes and p-values from previous differential expression (DE) results that use large-scale data (*e.g.*, microarray and RNA-seq) and evaluates which genes would react in response to the distinct experiments. This evaluation involves an unique pipeline of statistical methods, including weighted summarization, quantile detection, cluster analysis, and ANOVA tests, in order to classify a subset of relevant genes whose DE is similar or dependent to certain biological factors.
Maintained by Itamar José Guimarães Nunes. Last updated 5 months ago.
classificationdifferentialexpressiongeneexpressionmicroarraymultiplecomparisonrnaseqsystemsbiologytranscriptomics
2 stars 4.30 score 4 scriptssigbertklinke
exams.forge:Support for Compiling Examination Tasks using the 'exams' Package
The main aim is to further facilitate the creation of exercises based on the package 'exams' by Grün, B., and Zeileis, A. (2009) <doi:10.18637/jss.v029.i10>. Creating effective student exercises involves challenges such as creating appropriate data sets and ensuring access to intermediate values for accurate explanation of solutions. The functionality includes the generation of univariate and bivariate data including simple time series, functions for theoretical distributions and their approximation, statistical and mathematical calculations for tasks in basic statistics courses as well as general tasks such as string manipulation, LaTeX/HTML formatting and the editing of XML task files for 'Moodle'.
Maintained by Sigbert Klinke. Last updated 9 months ago.
2.70 score 1 scripts