Showing 2 of total 2 results (show query)
lbelzile
mev:Modelling of Extreme Values
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes [Dombry, Engelke and Oesting (2016) <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
Maintained by Leo Belzile. Last updated 5 months ago.
extreme-value-statisticslikelihood-functionsmax-stablesimulationthreshold-selectionopenblascppopenmp
14 stars 8.21 score 94 scripts 4 dependentscran
extRemes:Extreme Value Analysis
General functions for performing extreme value analysis. In particular, allows for inclusion of covariates into the parameters of the extreme-value distributions, as well as estimation through MLE, L-moments, generalized (penalized) MLE (GMLE), as well as Bayes. Inference methods include parametric normal approximation, profile-likelihood, Bayes, and bootstrapping. Some bivariate functionality and dependence checking (e.g., auto-tail dependence function plot, extremal index estimation) is also included. For a tutorial, see Gilleland and Katz (2016) <doi: 10.18637/jss.v072.i08> and for bootstrapping, please see Gilleland (2020) <doi: 10.1175/JTECH-D-20-0070.1>.
Maintained by Eric Gilleland. Last updated 4 months ago.
2 stars 3.81 score 5 dependents