ppclust:Probabilistic and Possibilistic Cluster Analysis
Partitioning clustering divides the objects in a data set into non-overlapping subsets or clusters by using the
prototype-based probabilistic and possibilistic clustering
algorithms. This package covers a set of the functions for
Fuzzy C-Means (Bezdek, 1974) <doi:10.1080/01969727308546047>,
Possibilistic C-Means (Krishnapuram & Keller, 1993)
<doi:10.1109/91.227387>, Possibilistic Fuzzy C-Means (Pal et
al, 2005) <doi:10.1109/TFUZZ.2004.840099>, Possibilistic
Clustering Algorithm (Yang et al, 2006)
<doi:10.1016/j.patcog.2005.07.005>, Possibilistic C-Means with
Repulsion (Wachs et al, 2006) <doi:10.1007/3-540-31662-0_6> and
the other variants of hard and soft clustering algorithms. The
cluster prototypes and membership matrices required by these
partitioning algorithms are initialized with different
initialization techniques that are available in the package
'inaparc'. As the distance metrics, not only the Euclidean
distance but also a set of the commonly used distance metrics
are available to use with some of the algorithms in the
package.