Showing 3 of total 3 results (show query)
bioc
snm:Supervised Normalization of Microarrays
SNM is a modeling strategy especially designed for normalizing high-throughput genomic data. The underlying premise of our approach is that your data is a function of what we refer to as study-specific variables. These variables are either biological variables that represent the target of the statistical analysis, or adjustment variables that represent factors arising from the experimental or biological setting the data is drawn from. The SNM approach aims to simultaneously model all study-specific variables in order to more accurately characterize the biological or clinical variables of interest.
Maintained by John D. Storey. Last updated 5 months ago.
microarrayonechanneltwochannelmultichanneldifferentialexpressionexonarraygeneexpressiontranscriptionmultiplecomparisonpreprocessingqualitycontrol
4.41 score 64 scriptscran
assist:A Suite of R Functions Implementing Spline Smoothing Techniques
Fit various smoothing spline models. Includes an ssr() function for smoothing spline regression, an nnr() function for nonparametric nonlinear regression, an snr() function for semiparametric nonlinear regression, an slm() function for semiparametric linear mixed-effects models, and an snm() function for semiparametric nonlinear mixed-effects models. See Wang (2011) <doi:10.1201/b10954> for an overview.
Maintained by Yuedong Wang. Last updated 2 years ago.
1.00 score