Showing 15 of total 15 results (show query)

cran

frailtypack:Shared, Joint (Generalized) Frailty Models; Surrogate Endpoints

The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. 15) functions to compute power and sample size for four Gamma-frailty-based designs: Shared Frailty Models, Nested Frailty Models, Joint Frailty Models, and General Joint Frailty Models. Each design includes two primary functions: a power function, which computes power given a specified sample size; and a sample size function, which computes the required sample size to achieve a specified power. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.

Maintained by Virginie Rondeau. Last updated 24 days ago.

fortranopenmp

7 stars 5.56 score 1 dependents

emilio-berti

enerscape:Compute Energy Landscapes

Compute energy landscapes using a digital elevation model raster and body mass of animals.

Maintained by Emilio Berti. Last updated 7 months ago.

cpp

4 stars 4.68 score 12 scripts

nialsig

doolkit:Exploration of Dental Surface Topography

Tools for exploring the topography of 3d triangle meshes. The functions were developed with dental surfaces in mind, but could be applied to any triangle mesh of class 'mesh3d'. More specifically, 'doolkit' allows to isolate the border of a mesh, or a subpart of the mesh using the polygon networks method; crop a mesh; compute basic descriptors (elevation, orientation, footprint area); compute slope, angularity and relief index (Ungar and Williamson (2000) <https://palaeo-electronica.org/2000_1/gorilla/issue1_00.htm>; Boyer (2008) <doi:10.1016/j.jhevol.2008.08.002>), inclination and occlusal relief index or gamma (Guy et al. (2013) <doi:10.1371/journal.pone.0066142>), OPC (Evans et al. (2007) <doi:10.1038/nature05433>), OPCR (Wilson et al. (2012) <doi:10.1038/nature10880>), DNE (Bunn et al. (2011) <doi:10.1002/ajpa.21489>; Pampush et al. (2016) <doi:10.1007/s10914-016-9326-0>), form factor (Horton (1932) <doi:10.1029/TR013i001p00350>), basin elongation (Schum (1956) <doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2>), lemniscate ratio (Chorley et al; (1957) <doi:10.2475/ajs.255.2.138>), enamel-dentine distance (Guy et al. (2015) <doi:10.1371/journal.pone.0138802>; Thiery et al. (2017) <doi:10.3389/fphys.2017.00524>), absolute crown strength (Schwartz et al. (2020) <doi:10.1098/rsbl.2019.0671>), relief rate (Thiery et al. (2019) <doi:10.1002/ajpa.23916>) and area-relative curvature; draw cumulative profiles of a topographic variable; and map a variable over a 3d triangle mesh.

Maintained by Ghislain Thiery. Last updated 1 years ago.

1 stars 2.70 score 1 scripts