Currently serving26341packages,22656articles, and64225datasets by1265organizations,13662 maintainers and22192 contributors.
vimc
lcbc-uio
stan-dev
pharmaverse
r-spatial
tidyverse
ropengov
rstudio
r-lib
ropensci
bioc
r-forge
kwb-r
pik-piam
hypertidy
poissonconsulting
mrc-ide
tidymodels
pecanproject
insightsengineering
thinkr-open
mlr-org
inbo
ohdsi
ggseg
modeloriented
paws-r
predictiveecology
flr
ropenspain
sciviews
bnosac
mrcieu
repboxr
openvolley
rmi-pacta
nlmixr2
epiverse-trace
ices-tools-prod
frbcesab
yulab-smu
riatelab
azure
statnet
mlverse
appsilon
bips-hb
epiforecasts
rjdverse
cloudyr
tmsalab
usaid-oha-si
openpharma
hubverse-org
dreamrs
bupaverse
usepa
business-science
easystats
merck
ambiorix-web
certe-medical-epidemiology
coatless-rpkg
darwin-eu
r-dbi
hugheylab
nutriverse
rsquaredacademy
uscbiostats
spatstat
rikenbit
bluegreen-labs
traitecoevo
nflverse
ifpri
humaniverse
rspatial
gesistsa
apache
aus-doh-safety-and-quality
ocbe-uio
cogdisreslab
biometris
ipeagit
data-cleaning
ctu-bern
reconhub
epicentre-msf
terminological
rformassspectrometry
cleanzr
a2-ai
stscl
quanteda
gamlss-dev
csids
Want to learn more about r-universe? Have a look atropensci.org/r-universeor updates from the rOpenSci blog:
Showing 1 of total 1 results (show query)
cran
A set of control charts for batch processes based on the VAR model. The package contains the implementation of T2.var and W.var control charts based on VAR model coefficients using the couple vectors theory. In each time-instant the VAR coefficients are estimated from a historical in-control dataset and a decision rule is made for online classifying of a new batch data. Those charts allow efficient online monitoring since the very first time-instant. The offline version is available too. In order to evaluate the chart's performance, this package contains functions to generate batch data for offline and online monitoring.See in Danilo Marcondes Filho and Marcio Valk (2020) <doi:10.1016/j.ejor.2019.12.038>.
Maintained by Danilo Marcondes Filho. Last updated 5 years ago.